1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
.TH SGESDD l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
SGESDD - compute the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and right singular vectors
.SH SYNOPSIS
.TP 19
SUBROUTINE SGESDD(
JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK,
LWORK, IWORK, INFO )
.TP 19
.ti +4
CHARACTER
JOBZ
.TP 19
.ti +4
INTEGER
INFO, LDA, LDU, LDVT, LWORK, M, N
.TP 19
.ti +4
INTEGER
IWORK( * )
.TP 19
.ti +4
REAL
A( LDA, * ), S( * ), U( LDU, * ),
VT( LDVT, * ), WORK( * )
.SH PURPOSE
SGESDD computes the singular value decomposition (SVD) of a real M-by-N matrix A, optionally computing the left and right singular vectors. If singular vectors are desired, it uses a divide-and-conquer algorithm.
.br
The SVD is written
.br
A = U * SIGMA * transpose(V)
.br
where SIGMA is an M-by-N matrix which is zero except for its
min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
V is an N-by-N orthogonal matrix. The diagonal elements of SIGMA
are the singular values of A; they are real and non-negative, and
are returned in descending order. The first min(m,n) columns of
U and V are the left and right singular vectors of A.
.br
Note that the routine returns VT = V**T, not V.
.br
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
.br
.SH ARGUMENTS
.TP 8
JOBZ (input) CHARACTER*1
Specifies options for computing all or part of the matrix U:
.br
= 'A': all M columns of U and all N rows of V**T are
returned in the arrays U and VT;
= 'S': the first min(M,N) columns of U and the first
min(M,N) rows of V**T are returned in the arrays U
and VT;
= 'O': If M >= N, the first N columns of U are overwritten
on the array A and all rows of V**T are returned in
the array VT;
otherwise, all columns of U are returned in the
array U and the first M rows of V**T are overwritten
in the array VT;
= 'N': no columns of U or rows of V**T are computed.
.TP 8
M (input) INTEGER
The number of rows of the input matrix A. M >= 0.
.TP 8
N (input) INTEGER
The number of columns of the input matrix A. N >= 0.
.TP 8
A (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit,
if JOBZ = 'O', A is overwritten with the first N columns
of U (the left singular vectors, stored
columnwise) if M >= N;
A is overwritten with the first M rows
of V**T (the right singular vectors, stored
rowwise) otherwise.
if JOBZ .ne. 'O', the contents of A are destroyed.
.TP 8
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
.TP 8
S (output) REAL array, dimension (min(M,N))
The singular values of A, sorted so that S(i) >= S(i+1).
.TP 8
U (output) REAL array, dimension (LDU,UCOL)
UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
UCOL = min(M,N) if JOBZ = 'S'.
If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
orthogonal matrix U;
if JOBZ = 'S', U contains the first min(M,N) columns of U
(the left singular vectors, stored columnwise);
if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
.TP 8
LDU (input) INTEGER
The leading dimension of the array U. LDU >= 1; if
JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
.TP 8
VT (output) REAL array, dimension (LDVT,N)
If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
N-by-N orthogonal matrix V**T;
if JOBZ = 'S', VT contains the first min(M,N) rows of
V**T (the right singular vectors, stored rowwise);
if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
.TP 8
LDVT (input) INTEGER
The leading dimension of the array VT. LDVT >= 1; if
JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
if JOBZ = 'S', LDVT >= min(M,N).
.TP 8
WORK (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
.TP 8
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= 1.
If JOBZ = 'N',
LWORK >= 3*min(M,N) + max(max(M,N),6*min(M,N)).
If JOBZ = 'O',
LWORK >= 3*min(M,N)*min(M,N) +
max(max(M,N),5*min(M,N)*min(M,N)+4*min(M,N)).
If JOBZ = 'S' or 'A'
LWORK >= 3*min(M,N)*min(M,N) +
max(max(M,N),4*min(M,N)*min(M,N)+4*min(M,N)).
For good performance, LWORK should generally be larger.
If LWORK = -1 but other input arguments are legal, WORK(1)
returns the optimal LWORK.
.TP 8
IWORK (workspace) INTEGER array, dimension (8*min(M,N))
.TP 8
INFO (output) INTEGER
= 0: successful exit.
.br
< 0: if INFO = -i, the i-th argument had an illegal value.
.br
> 0: SBDSDC did not converge, updating process failed.
.SH FURTHER DETAILS
Based on contributions by
.br
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
.br
|