File: sggsvp.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (161 lines) | stat: -rwxr-xr-x 4,351 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
.TH SGGSVP l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
SGGSVP - compute orthogonal matrices U, V and Q such that  N-K-L K L U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0
.SH SYNOPSIS
.TP 19
SUBROUTINE SGGSVP(
JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
IWORK, TAU, WORK, INFO )
.TP 19
.ti +4
CHARACTER
JOBQ, JOBU, JOBV
.TP 19
.ti +4
INTEGER
INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
.TP 19
.ti +4
REAL
TOLA, TOLB
.TP 19
.ti +4
INTEGER
IWORK( * )
.TP 19
.ti +4
REAL
A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
.SH PURPOSE
SGGSVP computes orthogonal matrices U, V and Q such that N-K-L K L U'*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;               L ( 0     0   A23 )
.br
          M-K-L ( 0     0    0  )
.br

                 N-K-L  K    L
.br
        =     K ( 0    A12  A13 )  if M-K-L < 0;
.br
            M-K ( 0     0   A23 )
.br

               N-K-L  K    L
.br
 V'*B*Q =   L ( 0     0   B13 )
.br
          P-L ( 0     0    0  )
.br

where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective
numerical rank of the (M+P)-by-N matrix (A',B')'.  Z' denotes the
transpose of Z.
.br

This decomposition is the preprocessing step for computing the
Generalized Singular Value Decomposition (GSVD), see subroutine
SGGSVD.
.br

.SH ARGUMENTS
.TP 8
JOBU    (input) CHARACTER*1
= 'U':  Orthogonal matrix U is computed;
.br
= 'N':  U is not computed.
.TP 8
JOBV    (input) CHARACTER*1
.br
= 'V':  Orthogonal matrix V is computed;
.br
= 'N':  V is not computed.
.TP 8
JOBQ    (input) CHARACTER*1
.br
= 'Q':  Orthogonal matrix Q is computed;
.br
= 'N':  Q is not computed.
.TP 8
M       (input) INTEGER
The number of rows of the matrix A.  M >= 0.
.TP 8
P       (input) INTEGER
The number of rows of the matrix B.  P >= 0.
.TP 8
N       (input) INTEGER
The number of columns of the matrices A and B.  N >= 0.
.TP 8
A       (input/output) REAL array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A contains the triangular (or trapezoidal) matrix
described in the Purpose section.
.TP 8
LDA     (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
.TP 8
B       (input/output) REAL array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, B contains the triangular matrix described in
the Purpose section.
.TP 8
LDB     (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
.TP 8
TOLA    (input) REAL
TOLB    (input) REAL
TOLA and TOLB are the thresholds to determine the effective
numerical rank of matrix B and a subblock of A. Generally,
they are set to
TOLA = MAX(M,N)*norm(A)*MACHEPS,
TOLB = MAX(P,N)*norm(B)*MACHEPS.
The size of TOLA and TOLB may affect the size of backward
errors of the decomposition.
.TP 8
K       (output) INTEGER
L       (output) INTEGER
On exit, K and L specify the dimension of the subblocks
described in Purpose.
K + L = effective numerical rank of (A',B')'.
.TP 8
U       (output) REAL array, dimension (LDU,M)
If JOBU = 'U', U contains the orthogonal matrix U.
If JOBU = 'N', U is not referenced.
.TP 8
LDU     (input) INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
.TP 8
V       (output) REAL array, dimension (LDV,M)
If JOBV = 'V', V contains the orthogonal matrix V.
If JOBV = 'N', V is not referenced.
.TP 8
LDV     (input) INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
.TP 8
Q       (output) REAL array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the orthogonal matrix Q.
If JOBQ = 'N', Q is not referenced.
.TP 8
LDQ     (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
.TP 8
IWORK   (workspace) INTEGER array, dimension (N)
.TP 8
TAU     (workspace) REAL array, dimension (N)
.TP 8
WORK    (workspace) REAL array, dimension (max(3*N,M,P))
.TP 8
INFO    (output) INTEGER
= 0:  successful exit
.br
< 0:  if INFO = -i, the i-th argument had an illegal value.
.SH FURTHER DETAILS
The subroutine uses LAPACK subroutine SGEQPF for the QR factorization
with column pivoting to detect the effective numerical rank of the
a matrix. It may be replaced by a better rank determination strategy.