File: slags2.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (50 lines) | stat: -rwxr-xr-x 2,015 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
.TH SLAGS2 l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
SLAGS2 - compute 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then  U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x )  or if ( .NOT.UPPER ) then  U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x )  The rows of the transformed A and B are parallel, where  U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ )  Z' denotes the transpose of Z
.SH SYNOPSIS
.TP 19
SUBROUTINE SLAGS2(
UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV,
SNV, CSQ, SNQ )
.TP 19
.ti +4
LOGICAL
UPPER
.TP 19
.ti +4
REAL
A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ,
SNU, SNV
.SH PURPOSE
SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such that if ( UPPER ) then U'*A*Q = U'*( A1 A2 )*Q = ( x 0 ) ( 0 A3 ) ( x x ) and V'*B*Q = V'*( B1 B2 )*Q = ( x 0 ) ( 0 B3 ) ( x x ) or if ( .NOT.UPPER ) then U'*A*Q = U'*( A1 0 )*Q = ( x x ) ( A2 A3 ) ( 0 x ) and V'*B*Q = V'*( B1 0 )*Q = ( x x ) ( B2 B3 ) ( 0 x ) The rows of the transformed A and B are parallel, where U = ( CSU SNU ), V = ( CSV SNV ), Q = ( CSQ SNQ ) ( -SNU CSU ) ( -SNV CSV ) ( -SNQ CSQ ) Z' denotes the transpose of Z. 

.SH ARGUMENTS
.TP 8
UPPER   (input) LOGICAL
= .TRUE.: the input matrices A and B are upper triangular.
.br
= .FALSE.: the input matrices A and B are lower triangular.
.TP 8
A1      (input) REAL
A2      (input) REAL
A3      (input) REAL
On entry, A1, A2 and A3 are elements of the input 2-by-2
upper (lower) triangular matrix A.
.TP 8
B1      (input) REAL
B2      (input) REAL
B3      (input) REAL
On entry, B1, B2 and B3 are elements of the input 2-by-2
upper (lower) triangular matrix B.
.TP 8
CSU     (output) REAL
SNU     (output) REAL
The desired orthogonal matrix U.
.TP 8
CSV     (output) REAL
SNV     (output) REAL
The desired orthogonal matrix V.
.TP 8
CSQ     (output) REAL
SNQ     (output) REAL
The desired orthogonal matrix Q.