File: slagv2.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (91 lines) | stat: -rwxr-xr-x 2,493 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
.TH SLAGV2 l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
SLAGV2 - compute the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular
.SH SYNOPSIS
.TP 19
SUBROUTINE SLAGV2(
A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL,
CSR, SNR )
.TP 19
.ti +4
INTEGER
LDA, LDB
.TP 19
.ti +4
REAL
CSL, CSR, SNL, SNR
.TP 19
.ti +4
REAL
A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ),
B( LDB, * ), BETA( 2 )
.SH PURPOSE
SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 matrix pencil (A,B) where B is upper triangular. This routine computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
SNR such that
.br

1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
   types), then
.br

   [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
   [  0  a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]

   [ b11 b12 ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
   [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ],

2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
   then
.br

   [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
   [ a21 a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]

   [ b11  0  ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
   [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ]

   where b11 >= b22 > 0.
.br


.SH ARGUMENTS
.TP 8
A       (input/output) REAL array, dimension (LDA, 2)
On entry, the 2 x 2 matrix A.
On exit, A is overwritten by the ``A-part'' of the
generalized Schur form.
.TP 8
LDA     (input) INTEGER
THe leading dimension of the array A.  LDA >= 2.
.TP 8
B       (input/output) REAL array, dimension (LDB, 2)
On entry, the upper triangular 2 x 2 matrix B.
On exit, B is overwritten by the ``B-part'' of the
generalized Schur form.
.TP 8
LDB     (input) INTEGER
THe leading dimension of the array B.  LDB >= 2.
.TP 8
ALPHAR  (output) REAL array, dimension (2)
ALPHAI  (output) REAL array, dimension (2)
BETA    (output) REAL array, dimension (2)
(ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
pencil (A,B), k=1,2, i = sqrt(-1).  Note that BETA(k) may
be zero.
.TP 8
CSL     (output) REAL
The cosine of the left rotation matrix.
.TP 8
SNL     (output) REAL
The sine of the left rotation matrix.
.TP 8
CSR     (output) REAL
The cosine of the right rotation matrix.
.TP 8
SNR     (output) REAL
The sine of the right rotation matrix.
.SH FURTHER DETAILS
Based on contributions by
.br
   Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA