1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
.TH SLARFT l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
SLARFT - form the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors
.SH SYNOPSIS
.TP 19
SUBROUTINE SLARFT(
DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
.TP 19
.ti +4
CHARACTER
DIRECT, STOREV
.TP 19
.ti +4
INTEGER
K, LDT, LDV, N
.TP 19
.ti +4
REAL
T( LDT, * ), TAU( * ), V( LDV, * )
.SH PURPOSE
SLARFT forms the triangular factor T of a real block reflector H of order n, which is defined as a product of k elementary reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
.br
H = I - V * T * V'
.br
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
.br
H = I - V' * T * V
.br
.SH ARGUMENTS
.TP 8
DIRECT (input) CHARACTER*1
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
.br
= 'F': H = H(1) H(2) . . . H(k) (Forward)
.br
= 'B': H = H(k) . . . H(2) H(1) (Backward)
.TP 8
STOREV (input) CHARACTER*1
Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
.br
= 'R': rowwise
.TP 8
N (input) INTEGER
The order of the block reflector H. N >= 0.
.TP 8
K (input) INTEGER
The order of the triangular factor T (= the number of
elementary reflectors). K >= 1.
.TP 8
V (input/output) REAL array, dimension
(LDV,K) if STOREV = 'C'
(LDV,N) if STOREV = 'R'
The matrix V. See further details.
.TP 8
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
.TP 8
TAU (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i).
.TP 8
T (output) REAL array, dimension (LDT,K)
The k by k triangular factor T of the block reflector.
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
lower triangular. The rest of the array is not used.
.TP 8
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
.SH FURTHER DETAILS
The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
.br
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
( v1 1 ) ( 1 v2 v2 v2 )
( v1 v2 1 ) ( 1 v3 v3 )
( v1 v2 v3 )
.br
( v1 v2 v3 )
.br
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
V = ( v1 v2 v3 ) V = ( v1 v1 1 )
( v1 v2 v3 ) ( v2 v2 v2 1 )
( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
( 1 v3 )
.br
( 1 )
.br
|