1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
|
.TH SLARZ l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
SLARZ - applie a real elementary reflector H to a real M-by-N matrix C, from either the left or the right
.SH SYNOPSIS
.TP 18
SUBROUTINE SLARZ(
SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
.TP 18
.ti +4
CHARACTER
SIDE
.TP 18
.ti +4
INTEGER
INCV, L, LDC, M, N
.TP 18
.ti +4
REAL
TAU
.TP 18
.ti +4
REAL
C( LDC, * ), V( * ), WORK( * )
.SH PURPOSE
SLARZ applies a real elementary reflector H to a real M-by-N matrix C, from either the left or the right. H is represented in the form
.br
H = I - tau * v * v'
.br
where tau is a real scalar and v is a real vector.
.br
If tau = 0, then H is taken to be the unit matrix.
.br
H is a product of k elementary reflectors as returned by STZRZF.
.SH ARGUMENTS
.TP 8
SIDE (input) CHARACTER*1
= 'L': form H * C
.br
= 'R': form C * H
.TP 8
M (input) INTEGER
The number of rows of the matrix C.
.TP 8
N (input) INTEGER
The number of columns of the matrix C.
.TP 8
L (input) INTEGER
The number of entries of the vector V containing
the meaningful part of the Householder vectors.
If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
.TP 8
V (input) REAL array, dimension (1+(L-1)*abs(INCV))
The vector v in the representation of H as returned by
STZRZF. V is not used if TAU = 0.
.TP 8
INCV (input) INTEGER
The increment between elements of v. INCV <> 0.
.TP 8
TAU (input) REAL
The value tau in the representation of H.
.TP 8
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by the matrix H * C if SIDE = 'L',
or C * H if SIDE = 'R'.
.TP 8
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
.TP 8
WORK (workspace) REAL array, dimension
(N) if SIDE = 'L'
or (M) if SIDE = 'R'
.SH FURTHER DETAILS
Based on contributions by
.br
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
|