1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
|
.TH SLASD0 l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
SLASD0 - a divide and conquer approach, SLASD0 computes the singular value decomposition (SVD) of a real upper bidiagonal N-by-M matrix B with diagonal D and offdiagonal E, where M = N + SQRE
.SH SYNOPSIS
.TP 19
SUBROUTINE SLASD0(
N, SQRE, D, E, U, LDU, VT, LDVT, SMLSIZ, IWORK,
WORK, INFO )
.TP 19
.ti +4
INTEGER
INFO, LDU, LDVT, N, SMLSIZ, SQRE
.TP 19
.ti +4
INTEGER
IWORK( * )
.TP 19
.ti +4
REAL
D( * ), E( * ), U( LDU, * ), VT( LDVT, * ),
WORK( * )
.SH PURPOSE
Using a divide and conquer approach, SLASD0 computes the singular value decomposition (SVD) of a real upper bidiagonal N-by-M matrix B with diagonal D and offdiagonal E, where M = N + SQRE. The algorithm computes orthogonal matrices U and VT such that
B = U * S * VT. The singular values S are overwritten on D.
A related subroutine, SLASDA, computes only the singular values,
and optionally, the singular vectors in compact form.
.br
.SH ARGUMENTS
.TP 7
N (input) INTEGER
On entry, the row dimension of the upper bidiagonal matrix.
This is also the dimension of the main diagonal array D.
.TP 7
SQRE (input) INTEGER
Specifies the column dimension of the bidiagonal matrix.
= 0: The bidiagonal matrix has column dimension M = N;
.br
= 1: The bidiagonal matrix has column dimension M = N+1;
.TP 7
D (input/output) REAL array, dimension (N)
On entry D contains the main diagonal of the bidiagonal
matrix.
On exit D, if INFO = 0, contains its singular values.
.TP 7
E (input) REAL array, dimension (M-1)
Contains the subdiagonal entries of the bidiagonal matrix.
On exit, E has been destroyed.
.TP 7
U (output) REAL array, dimension at least (LDQ, N)
On exit, U contains the left singular vectors.
.TP 7
LDU (input) INTEGER
On entry, leading dimension of U.
.TP 7
VT (output) REAL array, dimension at least (LDVT, M)
On exit, VT' contains the right singular vectors.
.TP 7
LDVT (input) INTEGER
On entry, leading dimension of VT.
SMLSIZ (input) INTEGER
On entry, maximum size of the subproblems at the
bottom of the computation tree.
.TP 7
IWORK INTEGER work array.
Dimension must be at least (8 * N)
.TP 7
WORK REAL work array.
Dimension must be at least (3 * M**2 + 2 * M)
.TP 7
INFO (output) INTEGER
= 0: successful exit.
.br
< 0: if INFO = -i, the i-th argument had an illegal value.
.br
> 0: if INFO = 1, an singular value did not converge
.SH FURTHER DETAILS
Based on contributions by
.br
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA
.br
|