File: slasr.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (114 lines) | stat: -rwxr-xr-x 3,106 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
.TH SLASR l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
SLASR - perform the transformation  A := P*A, when SIDE = 'L' or 'l' ( Left-hand side )  A := A*P', when SIDE = 'R' or 'r' ( Right-hand side )  where A is an m by n real matrix and P is an orthogonal matrix,
.SH SYNOPSIS
.TP 18
SUBROUTINE SLASR(
SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
.TP 18
.ti +4
CHARACTER
DIRECT, PIVOT, SIDE
.TP 18
.ti +4
INTEGER
LDA, M, N
.TP 18
.ti +4
REAL
A( LDA, * ), C( * ), S( * )
.SH PURPOSE
SLASR performs the transformation A := P*A, when SIDE = 'L' or 'l' ( Left-hand side ) A := A*P', when SIDE = 'R' or 'r' ( Right-hand side ) where A is an m by n real matrix and P is an orthogonal matrix, consisting of a sequence of plane rotations determined by the
parameters PIVOT and DIRECT as follows ( z = m when SIDE = 'L' or 'l'
and z = n when SIDE = 'R' or 'r' ):
.br

When  DIRECT = 'F' or 'f'  ( Forward sequence ) then
.br

   P = P( z - 1 )*...*P( 2 )*P( 1 ),
.br

and when DIRECT = 'B' or 'b'  ( Backward sequence ) then
.br

   P = P( 1 )*P( 2 )*...*P( z - 1 ),
.br

where  P( k ) is a plane rotation matrix for the following planes:

   when  PIVOT = 'V' or 'v'  ( Variable pivot ),
.br
      the plane ( k, k + 1 )
.br

   when  PIVOT = 'T' or 't'  ( Top pivot ),
.br
      the plane ( 1, k + 1 )
.br

   when  PIVOT = 'B' or 'b'  ( Bottom pivot ),
.br
      the plane ( k, z )
.br

c( k ) and s( k )  must contain the  cosine and sine that define the
matrix  P( k ).  The two by two plane rotation part of the matrix
P( k ), R( k ), is assumed to be of the form
.br

   R( k ) = (  c( k )  s( k ) ).
.br
            ( -s( k )  c( k ) )
.br

This version vectorises across rows of the array A when SIDE = 'L'.

.SH ARGUMENTS
.TP 8
SIDE    (input) CHARACTER*1
Specifies whether the plane rotation matrix P is applied to
A on the left or the right.
= 'L':  Left, compute A := P*A
.br
= 'R':  Right, compute A:= A*P'
.TP 8
DIRECT  (input) CHARACTER*1
Specifies whether P is a forward or backward sequence of
plane rotations.
= 'F':  Forward, P = P( z - 1 )*...*P( 2 )*P( 1 )
.br
= 'B':  Backward, P = P( 1 )*P( 2 )*...*P( z - 1 )
.TP 8
PIVOT   (input) CHARACTER*1
Specifies the plane for which P(k) is a plane rotation
matrix.
= 'V':  Variable pivot, the plane (k,k+1)
.br
= 'T':  Top pivot, the plane (1,k+1)
.br
= 'B':  Bottom pivot, the plane (k,z)
.TP 8
M       (input) INTEGER
The number of rows of the matrix A.  If m <= 1, an immediate
return is effected.
.TP 8
N       (input) INTEGER
The number of columns of the matrix A.  If n <= 1, an
immediate return is effected.

C, S    (input) REAL arrays, dimension
(M-1) if SIDE = 'L'
(N-1) if SIDE = 'R'
c(k) and s(k) contain the cosine and sine that define the
matrix P(k).  The two by two plane rotation part of the
matrix P(k), R(k), is assumed to be of the form
R( k ) = (  c( k )  s( k ) ).
( -s( k )  c( k ) )
.TP 8
A       (input/output) REAL array, dimension (LDA,N)
The m by n matrix A.  On exit, A is overwritten by P*A if
SIDE = 'R' or by A*P' if SIDE = 'L'.
.TP 8
LDA     (input) INTEGER
The leading dimension of the array A.  LDA >= max(1,M).