File: sormbr.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (133 lines) | stat: -rwxr-xr-x 3,760 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
.TH SORMBR l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
SORMBR - VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N'
.SH SYNOPSIS
.TP 19
SUBROUTINE SORMBR(
VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
LDC, WORK, LWORK, INFO )
.TP 19
.ti +4
CHARACTER
SIDE, TRANS, VECT
.TP 19
.ti +4
INTEGER
INFO, K, LDA, LDC, LWORK, M, N
.TP 19
.ti +4
REAL
A( LDA, * ), C( LDC, * ), TAU( * ),
WORK( * )
.SH PURPOSE
If VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T':      Q**T * C       C * Q**T
.br

If VECT = 'P', SORMBR overwrites the general real M-by-N matrix C
with
.br
                SIDE = 'L'     SIDE = 'R'
.br
TRANS = 'N':      P * C          C * P
.br
TRANS = 'T':      P**T * C       C * P**T
.br

Here Q and P**T are the orthogonal matrices determined by SGEBRD when
reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
P**T are defined as products of elementary reflectors H(i) and G(i)
respectively.
.br

Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
order of the orthogonal matrix Q or P**T that is applied.

If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
if nq >= k, Q = H(1) H(2) . . . H(k);
.br
if nq < k, Q = H(1) H(2) . . . H(nq-1).
.br

If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
if k < nq, P = G(1) G(2) . . . G(k);
.br
if k >= nq, P = G(1) G(2) . . . G(nq-1).
.br

.SH ARGUMENTS
.TP 8
VECT    (input) CHARACTER*1
= 'Q': apply Q or Q**T;
.br
= 'P': apply P or P**T.
.TP 8
SIDE    (input) CHARACTER*1
.br
= 'L': apply Q, Q**T, P or P**T from the Left;
.br
= 'R': apply Q, Q**T, P or P**T from the Right.
.TP 8
TRANS   (input) CHARACTER*1
.br
= 'N':  No transpose, apply Q  or P;
.br
= 'T':  Transpose, apply Q**T or P**T.
.TP 8
M       (input) INTEGER
The number of rows of the matrix C. M >= 0.
.TP 8
N       (input) INTEGER
The number of columns of the matrix C. N >= 0.
.TP 8
K       (input) INTEGER
If VECT = 'Q', the number of columns in the original
matrix reduced by SGEBRD.
If VECT = 'P', the number of rows in the original
matrix reduced by SGEBRD.
K >= 0.
.TP 8
A       (input) REAL array, dimension
(LDA,min(nq,K)) if VECT = 'Q'
(LDA,nq)        if VECT = 'P'
The vectors which define the elementary reflectors H(i) and
G(i), whose products determine the matrices Q and P, as
returned by SGEBRD.
.TP 8
LDA     (input) INTEGER
The leading dimension of the array A.
If VECT = 'Q', LDA >= max(1,nq);
if VECT = 'P', LDA >= max(1,min(nq,K)).
.TP 8
TAU     (input) REAL array, dimension (min(nq,K))
TAU(i) must contain the scalar factor of the elementary
reflector H(i) or G(i) which determines Q or P, as returned
by SGEBRD in the array argument TAUQ or TAUP.
.TP 8
C       (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
or P*C or P**T*C or C*P or C*P**T.
.TP 8
LDC     (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
.TP 8
WORK    (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
.TP 8
LWORK   (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
.TP 8
INFO    (output) INTEGER
= 0:  successful exit
.br
< 0:  if INFO = -i, the i-th argument had an illegal value