File: sormrq.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (103 lines) | stat: -rwxr-xr-x 2,819 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
.TH SORMRQ l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
SORMRQ - overwrite the general real M-by-N matrix C with  SIDE = 'L' SIDE = 'R' TRANS = 'N'
.SH SYNOPSIS
.TP 19
SUBROUTINE SORMRQ(
SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
WORK, LWORK, INFO )
.TP 19
.ti +4
CHARACTER
SIDE, TRANS
.TP 19
.ti +4
INTEGER
INFO, K, LDA, LDC, LWORK, M, N
.TP 19
.ti +4
REAL
A( LDA, * ), C( LDC, * ), TAU( * ),
WORK( * )
.SH PURPOSE
SORMRQ overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T':      Q**T * C       C * Q**T
.br

where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
.br

      Q = H(1) H(2) . . . H(k)
.br

as returned by SGERQF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
.br

.SH ARGUMENTS
.TP 8
SIDE    (input) CHARACTER*1
= 'L': apply Q or Q**T from the Left;
.br
= 'R': apply Q or Q**T from the Right.
.TP 8
TRANS   (input) CHARACTER*1
.br
= 'N':  No transpose, apply Q;
.br
= 'T':  Transpose, apply Q**T.
.TP 8
M       (input) INTEGER
The number of rows of the matrix C. M >= 0.
.TP 8
N       (input) INTEGER
The number of columns of the matrix C. N >= 0.
.TP 8
K       (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
.TP 8
A       (input) REAL array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
SGERQF in the last k rows of its array argument A.
A is modified by the routine but restored on exit.
.TP 8
LDA     (input) INTEGER
The leading dimension of the array A. LDA >= max(1,K).
.TP 8
TAU     (input) REAL array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by SGERQF.
.TP 8
C       (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
.TP 8
LDC     (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
.TP 8
WORK    (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
.TP 8
LWORK   (input) INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
.TP 8
INFO    (output) INTEGER
= 0:  successful exit
.br
< 0:  if INFO = -i, the i-th argument had an illegal value