1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
|
.TH SPOTRI l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
SPOTRI - compute the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF
.SH SYNOPSIS
.TP 19
SUBROUTINE SPOTRI(
UPLO, N, A, LDA, INFO )
.TP 19
.ti +4
CHARACTER
UPLO
.TP 19
.ti +4
INTEGER
INFO, LDA, N
.TP 19
.ti +4
REAL
A( LDA, * )
.SH PURPOSE
SPOTRI computes the inverse of a real symmetric positive definite matrix A using the Cholesky factorization A = U**T*U or A = L*L**T computed by SPOTRF.
.SH ARGUMENTS
.TP 8
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
.br
= 'L': Lower triangle of A is stored.
.TP 8
N (input) INTEGER
The order of the matrix A. N >= 0.
.TP 8
A (input/output) REAL array, dimension (LDA,N)
On entry, the triangular factor U or L from the Cholesky
factorization A = U**T*U or A = L*L**T, as computed by
SPOTRF.
On exit, the upper or lower triangle of the (symmetric)
inverse of A, overwriting the input factor U or L.
.TP 8
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value
.br
> 0: if INFO = i, the (i,i) element of the factor U or L is
zero, and the inverse could not be computed.
|