File: sspevx.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (149 lines) | stat: -rwxr-xr-x 4,900 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
.TH SSPEVX l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
SSPEVX - compute selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage
.SH SYNOPSIS
.TP 19
SUBROUTINE SSPEVX(
JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
INFO )
.TP 19
.ti +4
CHARACTER
JOBZ, RANGE, UPLO
.TP 19
.ti +4
INTEGER
IL, INFO, IU, LDZ, M, N
.TP 19
.ti +4
REAL
ABSTOL, VL, VU
.TP 19
.ti +4
INTEGER
IFAIL( * ), IWORK( * )
.TP 19
.ti +4
REAL
AP( * ), W( * ), WORK( * ), Z( LDZ, * )
.SH PURPOSE
SSPEVX computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix A in packed storage. Eigenvalues/vectors can be selected by specifying either a range of values or a range of
indices for the desired eigenvalues.
.br

.SH ARGUMENTS
.TP 8
JOBZ    (input) CHARACTER*1
= 'N':  Compute eigenvalues only;
.br
= 'V':  Compute eigenvalues and eigenvectors.
.TP 8
RANGE   (input) CHARACTER*1
.br
= 'A': all eigenvalues will be found;
.br
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found;
= 'I': the IL-th through IU-th eigenvalues will be found.
.TP 8
UPLO    (input) CHARACTER*1
.br
= 'U':  Upper triangle of A is stored;
.br
= 'L':  Lower triangle of A is stored.
.TP 8
N       (input) INTEGER
The order of the matrix A.  N >= 0.
.TP 8
AP      (input/output) REAL array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array.  The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

On exit, AP is overwritten by values generated during the
reduction to tridiagonal form.  If UPLO = 'U', the diagonal
and first superdiagonal of the tridiagonal matrix T overwrite
the corresponding elements of A, and if UPLO = 'L', the
diagonal and first subdiagonal of T overwrite the
corresponding elements of A.
.TP 8
VL      (input) REAL
VU      (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
.TP 8
IL      (input) INTEGER
IU      (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
.TP 8
ABSTOL  (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to

ABSTOL + EPS *   max( |a|,|b| ) ,

where EPS is the machine precision.  If ABSTOL is less than
or equal to zero, then  EPS*|T|  will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing AP to tridiagonal form.

Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').

See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
.TP 8
M       (output) INTEGER
The total number of eigenvalues found.  0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
.TP 8
W       (output) REAL array, dimension (N)
If INFO = 0, the selected eigenvalues in ascending order.
.TP 8
Z       (output) REAL array, dimension (LDZ, max(1,M))
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge, then that column of Z
contains the latest approximation to the eigenvector, and the
index of the eigenvector is returned in IFAIL.
If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
.TP 8
LDZ     (input) INTEGER
The leading dimension of the array Z.  LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
.TP 8
WORK    (workspace) REAL array, dimension (8*N)
.TP 8
IWORK   (workspace) INTEGER array, dimension (5*N)
.TP 8
IFAIL   (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero.  If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
.TP 8
INFO    (output) INTEGER
= 0:  successful exit
.br
< 0:  if INFO = -i, the i-th argument had an illegal value
.br
> 0:  if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.