File: sstevr.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (221 lines) | stat: -rwxr-xr-x 7,419 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
.TH SSTEVR l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
SSTEVR - compute selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix T
.SH SYNOPSIS
.TP 19
SUBROUTINE SSTEVR(
JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
LIWORK, INFO )
.TP 19
.ti +4
CHARACTER
JOBZ, RANGE
.TP 19
.ti +4
INTEGER
IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
.TP 19
.ti +4
REAL
ABSTOL, VL, VU
.TP 19
.ti +4
INTEGER
ISUPPZ( * ), IWORK( * )
.TP 19
.ti +4
REAL
D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
.SH PURPOSE
SSTEVR computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix T. Eigenvalues and eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.
.br

Whenever possible, SSTEVR calls SSTEGR to compute the
.br
eigenspectrum using Relatively Robust Representations.  SSTEGR
computes eigenvalues by the dqds algorithm, while orthogonal
eigenvectors are computed from various "good" L D L^T representations
(also known as Relatively Robust Representations). Gram-Schmidt
orthogonalization is avoided as far as possible. More specifically,
the various steps of the algorithm are as follows. For the i-th
unreduced block of T,
.br
   (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
        is a relatively robust representation,
.br
   (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
       relative accuracy by the dqds algorithm,
.br
   (c) If there is a cluster of close eigenvalues, "choose" sigma_i
       close to the cluster, and go to step (a),
.br
   (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
       compute the corresponding eigenvector by forming a
       rank-revealing twisted factorization.
.br
The desired accuracy of the output can be specified by the input
parameter ABSTOL.
.br

For more details, see "A new O(n^2) algorithm for the symmetric
tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
Computer Science Division Technical Report No. UCB//CSD-97-971,
UC Berkeley, May 1997.
.br


Note 1 : SSTEVR calls SSTEGR when the full spectrum is requested
on machines which conform to the ieee-754 floating point standard.
SSTEVR calls SSTEBZ and SSTEIN on non-ieee machines and
.br
when partial spectrum requests are made.
.br

Normal execution of SSTEGR may create NaNs and infinities and
hence may abort due to a floating point exception in environments
which do not handle NaNs and infinities in the ieee standard default
manner.
.br

.SH ARGUMENTS
.TP 8
JOBZ    (input) CHARACTER*1
= 'N':  Compute eigenvalues only;
.br
= 'V':  Compute eigenvalues and eigenvectors.
.TP 8
RANGE   (input) CHARACTER*1
.br
= 'A': all eigenvalues will be found.
.br
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
.TP 8
N       (input) INTEGER
The order of the matrix.  N >= 0.
.TP 8
D       (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, D may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
.TP 8
E       (input/output) REAL array, dimension (N)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A in elements 1 to N-1 of E; E(N) need not be set.
On exit, E may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
.TP 8
VL      (input) REAL
VU      (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
.TP 8
IL      (input) INTEGER
IU      (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
.TP 8
ABSTOL  (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to

ABSTOL + EPS *   max( |a|,|b| ) ,

where EPS is the machine precision.  If ABSTOL is less than
or equal to zero, then  EPS*|T|  will be used in its place,
where |T| is the 1-norm of the tridiagonal matrix obtained
by reducing A to tridiagonal form.

See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.

If high relative accuracy is important, set ABSTOL to
SLAMCH( 'Safe minimum' ).  Doing so will guarantee that
eigenvalues are computed to high relative accuracy when
possible in future releases.  The current code does not
make any guarantees about high relative accuracy, but
future releases will. See J. Barlow and J. Demmel,
"Computing Accurate Eigensystems of Scaled Diagonally
Dominant Matrices", LAPACK Working Note #7, for a discussion
of which matrices define their eigenvalues to high relative
accuracy.
.TP 8
M       (output) INTEGER
The total number of eigenvalues found.  0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
.TP 8
W       (output) REAL array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
.TP 8
Z       (output) REAL array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
.TP 8
LDZ     (input) INTEGER
The leading dimension of the array Z.  LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
.TP 8
ISUPPZ  (output) INTEGER array, dimension ( 2*max(1,M) )
The support of the eigenvectors in Z, i.e., the indices
indicating the nonzero elements in Z. The i-th eigenvector
is nonzero only in elements ISUPPZ( 2*i-1 ) through
ISUPPZ( 2*i ).
.TP 8
WORK    (workspace/output) REAL array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal (and
minimal) LWORK.
.TP 8
LWORK   (input) INTEGER
The dimension of the array WORK.  LWORK >= 20*N.

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
.TP 8
IWORK   (workspace/output) INTEGER array, dimension (LIWORK)
On exit, if INFO = 0, IWORK(1) returns the optimal (and
minimal) LIWORK.
.TP 8
LIWORK  (input) INTEGER
The dimension of the array IWORK.  LIWORK >= 10*N.

If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
.TP 8
INFO    (output) INTEGER
= 0:  successful exit
.br
< 0:  if INFO = -i, the i-th argument had an illegal value
.br
> 0:  Internal error
.SH FURTHER DETAILS
Based on contributions by
.br
   Inderjit Dhillon, IBM Almaden, USA
.br
   Osni Marques, LBNL/NERSC, USA
.br
   Ken Stanley, Computer Science Division, University of
.br
     California at Berkeley, USA
.br