1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
.TH SSTEVX l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
SSTEVX - compute selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A
.SH SYNOPSIS
.TP 19
SUBROUTINE SSTEVX(
JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
M, W, Z, LDZ, WORK, IWORK, IFAIL, INFO )
.TP 19
.ti +4
CHARACTER
JOBZ, RANGE
.TP 19
.ti +4
INTEGER
IL, INFO, IU, LDZ, M, N
.TP 19
.ti +4
REAL
ABSTOL, VL, VU
.TP 19
.ti +4
INTEGER
IFAIL( * ), IWORK( * )
.TP 19
.ti +4
REAL
D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
.SH PURPOSE
SSTEVX computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix A. Eigenvalues and eigenvectors can be selected by specifying either a range of values
or a range of indices for the desired eigenvalues.
.br
.SH ARGUMENTS
.TP 8
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
.br
= 'V': Compute eigenvalues and eigenvectors.
.TP 8
RANGE (input) CHARACTER*1
.br
= 'A': all eigenvalues will be found.
.br
= 'V': all eigenvalues in the half-open interval (VL,VU]
will be found.
= 'I': the IL-th through IU-th eigenvalues will be found.
.TP 8
N (input) INTEGER
The order of the matrix. N >= 0.
.TP 8
D (input/output) REAL array, dimension (N)
On entry, the n diagonal elements of the tridiagonal matrix
A.
On exit, D may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
.TP 8
E (input/output) REAL array, dimension (N)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix A in elements 1 to N-1 of E; E(N) need not be set.
On exit, E may be multiplied by a constant factor chosen
to avoid over/underflow in computing the eigenvalues.
.TP 8
VL (input) REAL
VU (input) REAL
If RANGE='V', the lower and upper bounds of the interval to
be searched for eigenvalues. VL < VU.
Not referenced if RANGE = 'A' or 'I'.
.TP 8
IL (input) INTEGER
IU (input) INTEGER
If RANGE='I', the indices (in ascending order) of the
smallest and largest eigenvalues to be returned.
1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
Not referenced if RANGE = 'A' or 'V'.
.TP 8
ABSTOL (input) REAL
The absolute error tolerance for the eigenvalues.
An approximate eigenvalue is accepted as converged
when it is determined to lie in an interval [a,b]
of width less than or equal to
ABSTOL + EPS * max( |a|,|b| ) ,
where EPS is the machine precision. If ABSTOL is less
than or equal to zero, then EPS*|T| will be used in
its place, where |T| is the 1-norm of the tridiagonal
matrix.
Eigenvalues will be computed most accurately when ABSTOL is
set to twice the underflow threshold 2*SLAMCH('S'), not zero.
If this routine returns with INFO>0, indicating that some
eigenvectors did not converge, try setting ABSTOL to
2*SLAMCH('S').
See "Computing Small Singular Values of Bidiagonal Matrices
with Guaranteed High Relative Accuracy," by Demmel and
Kahan, LAPACK Working Note #3.
.TP 8
M (output) INTEGER
The total number of eigenvalues found. 0 <= M <= N.
If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
.TP 8
W (output) REAL array, dimension (N)
The first M elements contain the selected eigenvalues in
ascending order.
.TP 8
Z (output) REAL array, dimension (LDZ, max(1,M) )
If JOBZ = 'V', then if INFO = 0, the first M columns of Z
contain the orthonormal eigenvectors of the matrix A
corresponding to the selected eigenvalues, with the i-th
column of Z holding the eigenvector associated with W(i).
If an eigenvector fails to converge (INFO > 0), then that
column of Z contains the latest approximation to the
eigenvector, and the index of the eigenvector is returned
in IFAIL. If JOBZ = 'N', then Z is not referenced.
Note: the user must ensure that at least max(1,M) columns are
supplied in the array Z; if RANGE = 'V', the exact value of M
is not known in advance and an upper bound must be used.
.TP 8
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
.TP 8
WORK (workspace) REAL array, dimension (5*N)
.TP 8
IWORK (workspace) INTEGER array, dimension (5*N)
.TP 8
IFAIL (output) INTEGER array, dimension (N)
If JOBZ = 'V', then if INFO = 0, the first M elements of
IFAIL are zero. If INFO > 0, then IFAIL contains the
indices of the eigenvectors that failed to converge.
If JOBZ = 'N', then IFAIL is not referenced.
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value
.br
> 0: if INFO = i, then i eigenvectors failed to converge.
Their indices are stored in array IFAIL.
|