1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
.TH STGEX2 l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
STGEX2 - swap adjacent diagonal blocks (A11, B11) and (A22, B22) of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair (A, B) by an orthogonal equivalence transformation
.SH SYNOPSIS
.TP 19
SUBROUTINE STGEX2(
WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
LDZ, J1, N1, N2, WORK, LWORK, INFO )
.TP 19
.ti +4
LOGICAL
WANTQ, WANTZ
.TP 19
.ti +4
INTEGER
INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
.TP 19
.ti +4
REAL
A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
WORK( * ), Z( LDZ, * )
.SH PURPOSE
STGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22) of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair (A, B) by an orthogonal equivalence transformation.
(A, B) must be in generalized real Schur canonical form (as returned
by SGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
diagonal blocks. B is upper triangular.
.br
Optionally, the matrices Q and Z of generalized Schur vectors are
updated.
.br
Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)'
Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)'
.SH ARGUMENTS
.TP 8
WANTQ (input) LOGICAL
.TRUE. : update the left transformation matrix Q;
.br
.FALSE.: do not update Q.
.TP 8
WANTZ (input) LOGICAL
.br
.TRUE. : update the right transformation matrix Z;
.br
.FALSE.: do not update Z.
.TP 8
N (input) INTEGER
The order of the matrices A and B. N >= 0.
.TP 7
A (input/output) REAL arrays, dimensions (LDA,N)
On entry, the matrix A in the pair (A, B).
On exit, the updated matrix A.
.TP 8
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
.TP 7
B (input/output) REAL arrays, dimensions (LDB,N)
On entry, the matrix B in the pair (A, B).
On exit, the updated matrix B.
.TP 8
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
.TP 8
Q (input/output) REAL array, dimension (LDZ,N)
On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
On exit, the updated matrix Q.
Not referenced if WANTQ = .FALSE..
.TP 8
LDQ (input) INTEGER
The leading dimension of the array Q. LDQ >= 1.
If WANTQ = .TRUE., LDQ >= N.
.TP 8
Z (input/output) REAL array, dimension (LDZ,N)
On entry, if WANTZ =.TRUE., the orthogonal matrix Z.
On exit, the updated matrix Z.
Not referenced if WANTZ = .FALSE..
.TP 8
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1.
If WANTZ = .TRUE., LDZ >= N.
.TP 8
J1 (input) INTEGER
The index to the first block (A11, B11). 1 <= J1 <= N.
.TP 8
N1 (input) INTEGER
The order of the first block (A11, B11). N1 = 0, 1 or 2.
.TP 8
N2 (input) INTEGER
The order of the second block (A22, B22). N2 = 0, 1 or 2.
.TP 8
WORK (workspace) REAL array, dimension (LWORK).
.TP 8
LWORK (input) INTEGER
The dimension of the array WORK.
LWORK >= MAX( N*(N2+N1), (N2+N1)*(N2+N1)*2 )
.TP 8
INFO (output) INTEGER
=0: Successful exit
.br
>0: If INFO = 1, the transformed matrix (A, B) would be
too far from generalized Schur form; the blocks are
not swapped and (A, B) and (Q, Z) are unchanged.
The problem of swapping is too ill-conditioned.
<0: If INFO = -16: LWORK is too small. Appropriate value
for LWORK is returned in WORK(1).
.SH FURTHER DETAILS
Based on contributions by
.br
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
.br
In the current code both weak and strong stability tests are
performed. The user can omit the strong stability test by changing
the internal logical parameter WANDS to .FALSE.. See ref. [2] for
details.
.br
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software,
.br
Report UMINF - 94.04, Department of Computing Science, Umea
University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
Note 87. To appear in Numerical Algorithms, 1996.
.br
|