1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
.TH STGSNA l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
STGSNA - estimate reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair (A, B) in generalized real Schur canonical form (or of any matrix pair (Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where Z' denotes the transpose of Z
.SH SYNOPSIS
.TP 19
SUBROUTINE STGSNA(
JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
IWORK, INFO )
.TP 19
.ti +4
CHARACTER
HOWMNY, JOB
.TP 19
.ti +4
INTEGER
INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
.TP 19
.ti +4
LOGICAL
SELECT( * )
.TP 19
.ti +4
INTEGER
IWORK( * )
.TP 19
.ti +4
REAL
A( LDA, * ), B( LDB, * ), DIF( * ), S( * ),
VL( LDVL, * ), VR( LDVR, * ), WORK( * )
.SH PURPOSE
STGSNA estimates reciprocal condition numbers for specified eigenvalues and/or eigenvectors of a matrix pair (A, B) in generalized real Schur canonical form (or of any matrix pair (Q*A*Z', Q*B*Z') with orthogonal matrices Q and Z, where Z' denotes the transpose of Z.
(A, B) must be in generalized real Schur form (as returned by SGGES),
i.e. A is block upper triangular with 1-by-1 and 2-by-2 diagonal
blocks. B is upper triangular.
.br
.SH ARGUMENTS
.TP 8
JOB (input) CHARACTER*1
Specifies whether condition numbers are required for
eigenvalues (S) or eigenvectors (DIF):
.br
= 'E': for eigenvalues only (S);
.br
= 'V': for eigenvectors only (DIF);
.br
= 'B': for both eigenvalues and eigenvectors (S and DIF).
.TP 8
HOWMNY (input) CHARACTER*1
.br
= 'A': compute condition numbers for all eigenpairs;
.br
= 'S': compute condition numbers for selected eigenpairs
specified by the array SELECT.
.TP 8
SELECT (input) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenpairs for which
condition numbers are required. To select condition numbers
for the eigenpair corresponding to a real eigenvalue w(j),
SELECT(j) must be set to .TRUE.. To select condition numbers
corresponding to a complex conjugate pair of eigenvalues w(j)
and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be
set to .TRUE..
If HOWMNY = 'A', SELECT is not referenced.
.TP 8
N (input) INTEGER
The order of the square matrix pair (A, B). N >= 0.
.TP 8
A (input) REAL array, dimension (LDA,N)
The upper quasi-triangular matrix A in the pair (A,B).
.TP 8
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
.TP 8
B (input) REAL array, dimension (LDB,N)
The upper triangular matrix B in the pair (A,B).
.TP 8
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
.TP 8
VL (input) REAL array, dimension (LDVL,M)
If JOB = 'E' or 'B', VL must contain left eigenvectors of
(A, B), corresponding to the eigenpairs specified by HOWMNY
and SELECT. The eigenvectors must be stored in consecutive
columns of VL, as returned by STGEVC.
If JOB = 'V', VL is not referenced.
.TP 8
LDVL (input) INTEGER
The leading dimension of the array VL. LDVL >= 1.
If JOB = 'E' or 'B', LDVL >= N.
.TP 8
VR (input) REAL array, dimension (LDVR,M)
If JOB = 'E' or 'B', VR must contain right eigenvectors of
(A, B), corresponding to the eigenpairs specified by HOWMNY
and SELECT. The eigenvectors must be stored in consecutive
columns ov VR, as returned by STGEVC.
If JOB = 'V', VR is not referenced.
.TP 8
LDVR (input) INTEGER
The leading dimension of the array VR. LDVR >= 1.
If JOB = 'E' or 'B', LDVR >= N.
.TP 8
S (output) REAL array, dimension (MM)
If JOB = 'E' or 'B', the reciprocal condition numbers of the
selected eigenvalues, stored in consecutive elements of the
array. For a complex conjugate pair of eigenvalues two
consecutive elements of S are set to the same value. Thus
S(j), DIF(j), and the j-th columns of VL and VR all
correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).
If JOB = 'V', S is not referenced.
.TP 8
DIF (output) REAL array, dimension (MM)
If JOB = 'V' or 'B', the estimated reciprocal condition
numbers of the selected eigenvectors, stored in consecutive
elements of the array. For a complex eigenvector two
consecutive elements of DIF are set to the same value. If
the eigenvalues cannot be reordered to compute DIF(j), DIF(j)
is set to 0; this can only occur when the true value would be
very small anyway.
If JOB = 'E', DIF is not referenced.
.TP 8
MM (input) INTEGER
The number of elements in the arrays S and DIF. MM >= M.
.TP 8
M (output) INTEGER
The number of elements of the arrays S and DIF used to store
the specified condition numbers; for each selected real
eigenvalue one element is used, and for each selected complex
conjugate pair of eigenvalues, two elements are used.
If HOWMNY = 'A', M is set to N.
.TP 8
WORK (workspace/output) REAL array, dimension (LWORK)
If JOB = 'E', WORK is not referenced. Otherwise,
on exit, if INFO = 0, WORK(1) returns the optimal LWORK.
.TP 8
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= N.
If JOB = 'V' or 'B' LWORK >= 2*N*(N+2)+16.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
.TP 8
IWORK (workspace) INTEGER array, dimension (N + 6)
If JOB = 'E', IWORK is not referenced.
.TP 8
INFO (output) INTEGER
=0: Successful exit
.br
<0: If INFO = -i, the i-th argument had an illegal value
.SH FURTHER DETAILS
The reciprocal of the condition number of a generalized eigenvalue
w = (a, b) is defined as
.br
S(w) = (|u'Av|**2 + |u'Bv|**2)**(1/2) / (norm(u)*norm(v))
where u and v are the left and right eigenvectors of (A, B)
corresponding to w; |z| denotes the absolute value of the complex
number, and norm(u) denotes the 2-norm of the vector u.
.br
The pair (a, b) corresponds to an eigenvalue w = a/b (= u'Av/u'Bv)
of the matrix pair (A, B). If both a and b equal zero, then (A B) is
singular and S(I) = -1 is returned.
.br
An approximate error bound on the chordal distance between the i-th
computed generalized eigenvalue w and the corresponding exact
eigenvalue lambda is
.br
chord(w, lambda) <= EPS * norm(A, B) / S(I)
.br
where EPS is the machine precision.
.br
The reciprocal of the condition number DIF(i) of right eigenvector u
and left eigenvector v corresponding to the generalized eigenvalue w
is defined as follows:
.br
a) If the i-th eigenvalue w = (a,b) is real
.br
Suppose U and V are orthogonal transformations such that
U'*(A, B)*V = (S, T) = ( a * ) ( b * ) 1
( 0 S22 ),( 0 T22 ) n-1
1 n-1 1 n-1
.br
Then the reciprocal condition number DIF(i) is
.br
Difl((a, b), (S22, T22)) = sigma-min( Zl ),
where sigma-min(Zl) denotes the smallest singular value of the
2(n-1)-by-2(n-1) matrix
.br
Zl = [ kron(a, In-1) -kron(1, S22) ]
.br
[ kron(b, In-1) -kron(1, T22) ] .
.br
Here In-1 is the identity matrix of size n-1. kron(X, Y) is the
Kronecker product between the matrices X and Y.
.br
Note that if the default method for computing DIF(i) is wanted
(see SLATDF), then the parameter DIFDRI (see below) should be
changed from 3 to 4 (routine SLATDF(IJOB = 2 will be used)).
See STGSYL for more details.
.br
b) If the i-th and (i+1)-th eigenvalues are complex conjugate pair,
Suppose U and V are orthogonal transformations such that
U'*(A, B)*V = (S, T) = ( S11 * ) ( T11 * ) 2
( 0 S22 ),( 0 T22) n-2
2 n-2 2 n-2
and (S11, T11) corresponds to the complex conjugate eigenvalue
pair (w, conjg(w)). There exist unitary matrices U1 and V1 such
that
.br
U1'*S11*V1 = ( s11 s12 ) and U1'*T11*V1 = ( t11 t12 )
( 0 s22 ) ( 0 t22 )
where the generalized eigenvalues w = s11/t11 and
.br
conjg(w) = s22/t22.
.br
Then the reciprocal condition number DIF(i) is bounded by
min( d1, max( 1, |real(s11)/real(s22)| )*d2 )
.br
where, d1 = Difl((s11, t11), (s22, t22)) = sigma-min(Z1), where
Z1 is the complex 2-by-2 matrix
.br
Z1 = [ s11 -s22 ]
.br
[ t11 -t22 ],
.br
This is done by computing (using real arithmetic) the
.br
roots of the characteristical polynomial det(Z1' * Z1 - lambda I),
where Z1' denotes the conjugate transpose of Z1 and det(X) denotes
the determinant of X.
.br
and d2 is an upper bound on Difl((S11, T11), (S22, T22)), i.e. an
upper bound on sigma-min(Z2), where Z2 is (2n-2)-by-(2n-2)
Z2 = [ kron(S11', In-2) -kron(I2, S22) ]
.br
[ kron(T11', In-2) -kron(I2, T22) ]
.br
Note that if the default method for computing DIF is wanted (see
SLATDF), then the parameter DIFDRI (see below) should be changed
from 3 to 4 (routine SLATDF(IJOB = 2 will be used)). See STGSYL
for more details.
.br
For each eigenvalue/vector specified by SELECT, DIF stores a
Frobenius norm-based estimate of Difl.
.br
An approximate error bound for the i-th computed eigenvector VL(i) or
VR(i) is given by
.br
EPS * norm(A, B) / DIF(i).
.br
See ref. [2-3] for more details and further references.
.br
Based on contributions by
.br
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
.br
References
.br
==========
.br
[1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
M.S. Moonen et al (eds), Linear Algebra for Large Scale and
Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
[2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
Eigenvalues of a Regular Matrix Pair (A, B) and Condition
Estimation: Theory, Algorithms and Software,
.br
Report UMINF - 94.04, Department of Computing Science, Umea
University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
Note 87. To appear in Numerical Algorithms, 1996.
.br
[3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK Working
Note 75. To appear in ACM Trans. on Math. Software, Vol 22,
No 1, 1996.
.br
|