1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
.TH STPRFS l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
STPRFS - provide error bounds and backward error estimates for the solution to a system of linear equations with a triangular packed coefficient matrix
.SH SYNOPSIS
.TP 19
SUBROUTINE STPRFS(
UPLO, TRANS, DIAG, N, NRHS, AP, B, LDB, X, LDX,
FERR, BERR, WORK, IWORK, INFO )
.TP 19
.ti +4
CHARACTER
DIAG, TRANS, UPLO
.TP 19
.ti +4
INTEGER
INFO, LDB, LDX, N, NRHS
.TP 19
.ti +4
INTEGER
IWORK( * )
.TP 19
.ti +4
REAL
AP( * ), B( LDB, * ), BERR( * ), FERR( * ),
WORK( * ), X( LDX, * )
.SH PURPOSE
STPRFS provides error bounds and backward error estimates for the solution to a system of linear equations with a triangular packed coefficient matrix.
The solution matrix X must be computed by STPTRS or some other
means before entering this routine. STPRFS does not do iterative
refinement because doing so cannot improve the backward error.
.SH ARGUMENTS
.TP 8
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
.br
= 'L': A is lower triangular.
.TP 8
TRANS (input) CHARACTER*1
.br
Specifies the form of the system of equations:
.br
= 'N': A * X = B (No transpose)
.br
= 'T': A**T * X = B (Transpose)
.br
= 'C': A**H * X = B (Conjugate transpose = Transpose)
.TP 8
DIAG (input) CHARACTER*1
.br
= 'N': A is non-unit triangular;
.br
= 'U': A is unit triangular.
.TP 8
N (input) INTEGER
The order of the matrix A. N >= 0.
.TP 8
NRHS (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
.TP 8
AP (input) REAL array, dimension (N*(N+1)/2)
The upper or lower triangular matrix A, packed columnwise in
a linear array. The j-th column of A is stored in the array
AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
.TP 8
B (input) REAL array, dimension (LDB,NRHS)
The right hand side matrix B.
.TP 8
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
.TP 8
X (input) REAL array, dimension (LDX,NRHS)
The solution matrix X.
.TP 8
LDX (input) INTEGER
The leading dimension of the array X. LDX >= max(1,N).
.TP 8
FERR (output) REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
.TP 8
BERR (output) REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
.TP 8
WORK (workspace) REAL array, dimension (3*N)
.TP 8
IWORK (workspace) INTEGER array, dimension (N)
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value
|