1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
|
.TH STRSYL l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
STRSYL - solve the real Sylvester matrix equation
.SH SYNOPSIS
.TP 19
SUBROUTINE STRSYL(
TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C,
LDC, SCALE, INFO )
.TP 19
.ti +4
CHARACTER
TRANA, TRANB
.TP 19
.ti +4
INTEGER
INFO, ISGN, LDA, LDB, LDC, M, N
.TP 19
.ti +4
REAL
SCALE
.TP 19
.ti +4
REAL
A( LDA, * ), B( LDB, * ), C( LDC, * )
.SH PURPOSE
STRSYL solves the real Sylvester matrix equation:
op(A)*X + X*op(B) = scale*C or
.br
op(A)*X - X*op(B) = scale*C,
.br
where op(A) = A or A**T, and A and B are both upper quasi-
triangular. A is M-by-M and B is N-by-N; the right hand side C and
the solution X are M-by-N; and scale is an output scale factor, set
<= 1 to avoid overflow in X.
.br
A and B must be in Schur canonical form (as returned by SHSEQR), that
is, block upper triangular with 1-by-1 and 2-by-2 diagonal blocks;
each 2-by-2 diagonal block has its diagonal elements equal and its
off-diagonal elements of opposite sign.
.br
.SH ARGUMENTS
.TP 8
TRANA (input) CHARACTER*1
Specifies the option op(A):
.br
= 'N': op(A) = A (No transpose)
.br
= 'T': op(A) = A**T (Transpose)
.br
= 'C': op(A) = A**H (Conjugate transpose = Transpose)
.TP 8
TRANB (input) CHARACTER*1
.br
Specifies the option op(B):
.br
= 'N': op(B) = B (No transpose)
.br
= 'T': op(B) = B**T (Transpose)
.br
= 'C': op(B) = B**H (Conjugate transpose = Transpose)
.TP 8
ISGN (input) INTEGER
.br
Specifies the sign in the equation:
.br
= +1: solve op(A)*X + X*op(B) = scale*C
.br
= -1: solve op(A)*X - X*op(B) = scale*C
.TP 8
M (input) INTEGER
The order of the matrix A, and the number of rows in the
matrices X and C. M >= 0.
.TP 8
N (input) INTEGER
The order of the matrix B, and the number of columns in the
matrices X and C. N >= 0.
.TP 8
A (input) REAL array, dimension (LDA,M)
The upper quasi-triangular matrix A, in Schur canonical form.
.TP 8
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
.TP 8
B (input) REAL array, dimension (LDB,N)
The upper quasi-triangular matrix B, in Schur canonical form.
.TP 8
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1,N).
.TP 8
C (input/output) REAL array, dimension (LDC,N)
On entry, the M-by-N right hand side matrix C.
On exit, C is overwritten by the solution matrix X.
.TP 8
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M)
.TP 8
SCALE (output) REAL
The scale factor, scale, set <= 1 to avoid overflow in X.
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value
.br
= 1: A and B have common or very close eigenvalues; perturbed
values were used to solve the equation (but the matrices
A and B are unchanged).
|