File: zgecon.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (72 lines) | stat: -rwxr-xr-x 1,904 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
.TH ZGECON l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
ZGECON - estimate the reciprocal of the condition number of a general complex matrix A, in either the 1-norm or the infinity-norm, using the LU factorization computed by ZGETRF
.SH SYNOPSIS
.TP 19
SUBROUTINE ZGECON(
NORM, N, A, LDA, ANORM, RCOND, WORK, RWORK,
INFO )
.TP 19
.ti +4
CHARACTER
NORM
.TP 19
.ti +4
INTEGER
INFO, LDA, N
.TP 19
.ti +4
DOUBLE
PRECISION ANORM, RCOND
.TP 19
.ti +4
DOUBLE
PRECISION RWORK( * )
.TP 19
.ti +4
COMPLEX*16
A( LDA, * ), WORK( * )
.SH PURPOSE
ZGECON estimates the reciprocal of the condition number of a general complex matrix A, in either the 1-norm or the infinity-norm, using the LU factorization computed by ZGETRF. 
An estimate is obtained for norm(inv(A)), and the reciprocal of the
condition number is computed as
.br
   RCOND = 1 / ( norm(A) * norm(inv(A)) ).
.br

.SH ARGUMENTS
.TP 8
NORM    (input) CHARACTER*1
Specifies whether the 1-norm condition number or the
infinity-norm condition number is required:
.br
= '1' or 'O':  1-norm;
.br
= 'I':         Infinity-norm.
.TP 8
N       (input) INTEGER
The order of the matrix A.  N >= 0.
.TP 8
A       (input) COMPLEX*16 array, dimension (LDA,N)
The factors L and U from the factorization A = P*L*U
as computed by ZGETRF.
.TP 8
LDA     (input) INTEGER
The leading dimension of the array A.  LDA >= max(1,N).
.TP 8
ANORM   (input) DOUBLE PRECISION
If NORM = '1' or 'O', the 1-norm of the original matrix A.
If NORM = 'I', the infinity-norm of the original matrix A.
.TP 8
RCOND   (output) DOUBLE PRECISION
The reciprocal of the condition number of the matrix A,
computed as RCOND = 1/(norm(A) * norm(inv(A))).
.TP 8
WORK    (workspace) COMPLEX*16 array, dimension (2*N)
.TP 8
RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
.TP 8
INFO    (output) INTEGER
= 0:  successful exit
.br
< 0:  if INFO = -i, the i-th argument had an illegal value