1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
.TH ZGGES l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
ZGGES - compute for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, the generalized complex Schur form (S, T), and optionally left and/or right Schur vectors (VSL and VSR)
.SH SYNOPSIS
.TP 18
SUBROUTINE ZGGES(
JOBVSL, JOBVSR, SORT, DELCTG, N, A, LDA, B, LDB,
SDIM, ALPHA, BETA, VSL, LDVSL, VSR, LDVSR, WORK,
LWORK, RWORK, BWORK, INFO )
.TP 18
.ti +4
CHARACTER
JOBVSL, JOBVSR, SORT
.TP 18
.ti +4
INTEGER
INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM
.TP 18
.ti +4
LOGICAL
BWORK( * )
.TP 18
.ti +4
DOUBLE
PRECISION RWORK( * )
.TP 18
.ti +4
COMPLEX*16
A( LDA, * ), ALPHA( * ), B( LDB, * ),
BETA( * ), VSL( LDVSL, * ), VSR( LDVSR, * ),
WORK( * )
.TP 18
.ti +4
LOGICAL
DELCTG
.TP 18
.ti +4
EXTERNAL
DELCTG
.SH PURPOSE
ZGGES computes for a pair of N-by-N complex nonsymmetric matrices (A,B), the generalized eigenvalues, the generalized complex Schur form (S, T), and optionally left and/or right Schur vectors (VSL and VSR). This gives the generalized Schur factorization
(A,B) = ( (VSL)*S*(VSR)**H, (VSL)*T*(VSR)**H )
.br
where (VSR)**H is the conjugate-transpose of VSR.
.br
Optionally, it also orders the eigenvalues so that a selected cluster
of eigenvalues appears in the leading diagonal blocks of the upper
triangular matrix S and the upper triangular matrix T. The leading
columns of VSL and VSR then form an unitary basis for the
corresponding left and right eigenspaces (deflating subspaces).
(If only the generalized eigenvalues are needed, use the driver
ZGGEV instead, which is faster.)
.br
A generalized eigenvalue for a pair of matrices (A,B) is a scalar w
or a ratio alpha/beta = w, such that A - w*B is singular. It is
usually represented as the pair (alpha,beta), as there is a
reasonable interpretation for beta=0, and even for both being zero.
A pair of matrices (S,T) is in generalized complex Schur form if S
and T are upper triangular and, in addition, the diagonal elements
of T are non-negative real numbers.
.br
.SH ARGUMENTS
.TP 8
JOBVSL (input) CHARACTER*1
= 'N': do not compute the left Schur vectors;
.br
= 'V': compute the left Schur vectors.
.TP 8
JOBVSR (input) CHARACTER*1
.br
= 'N': do not compute the right Schur vectors;
.br
= 'V': compute the right Schur vectors.
.TP 8
SORT (input) CHARACTER*1
Specifies whether or not to order the eigenvalues on the
diagonal of the generalized Schur form.
= 'N': Eigenvalues are not ordered;
.br
= 'S': Eigenvalues are ordered (see DELZTG).
.TP 8
DELZTG (input) LOGICAL FUNCTION of two COMPLEX*16 arguments
DELZTG must be declared EXTERNAL in the calling subroutine.
If SORT = 'N', DELZTG is not referenced.
If SORT = 'S', DELZTG is used to select eigenvalues to sort
to the top left of the Schur form.
An eigenvalue ALPHA(j)/BETA(j) is selected if
DELZTG(ALPHA(j),BETA(j)) is true.
Note that a selected complex eigenvalue may no longer satisfy
DELZTG(ALPHA(j),BETA(j)) = .TRUE. after ordering, since
ordering may change the value of complex eigenvalues
(especially if the eigenvalue is ill-conditioned), in this
case INFO is set to N+2 (See INFO below).
.TP 8
N (input) INTEGER
The order of the matrices A, B, VSL, and VSR. N >= 0.
.TP 8
A (input/output) COMPLEX*16 array, dimension (LDA, N)
On entry, the first of the pair of matrices.
On exit, A has been overwritten by its generalized Schur
form S.
.TP 8
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
.TP 8
B (input/output) COMPLEX*16 array, dimension (LDB, N)
On entry, the second of the pair of matrices.
On exit, B has been overwritten by its generalized Schur
form T.
.TP 8
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
.TP 8
SDIM (output) INTEGER
If SORT = 'N', SDIM = 0.
If SORT = 'S', SDIM = number of eigenvalues (after sorting)
for which DELZTG is true.
.TP 8
ALPHA (output) COMPLEX*16 array, dimension (N)
BETA (output) COMPLEX*16 array, dimension (N)
On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the
generalized eigenvalues. ALPHA(j), j=1,...,N and BETA(j),
j=1,...,N are the diagonals of the complex Schur form (A,B)
output by ZGGES. The BETA(j) will be non-negative real.
Note: the quotients ALPHA(j)/BETA(j) may easily over- or
underflow, and BETA(j) may even be zero. Thus, the user
should avoid naively computing the ratio alpha/beta.
However, ALPHA will be always less than and usually
comparable with norm(A) in magnitude, and BETA always less
than and usually comparable with norm(B).
.TP 8
VSL (output) COMPLEX*16 array, dimension (LDVSL,N)
If JOBVSL = 'V', VSL will contain the left Schur vectors.
Not referenced if JOBVSL = 'N'.
.TP 8
LDVSL (input) INTEGER
The leading dimension of the matrix VSL. LDVSL >= 1, and
if JOBVSL = 'V', LDVSL >= N.
.TP 8
VSR (output) COMPLEX*16 array, dimension (LDVSR,N)
If JOBVSR = 'V', VSR will contain the right Schur vectors.
Not referenced if JOBVSR = 'N'.
.TP 8
LDVSR (input) INTEGER
The leading dimension of the matrix VSR. LDVSR >= 1, and
if JOBVSR = 'V', LDVSR >= N.
.TP 8
WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
.TP 8
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,2*N).
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
.TP 8
RWORK (workspace) DOUBLE PRECISION array, dimension (8*N)
.TP 8
BWORK (workspace) LOGICAL array, dimension (N)
Not referenced if SORT = 'N'.
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value.
.br
=1,...,N:
The QZ iteration failed. (A,B) are not in Schur
form, but ALPHA(j) and BETA(j) should be correct for
j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in ZHGEQZ
.br
=N+2: after reordering, roundoff changed values of
some complex eigenvalues so that leading
eigenvalues in the Generalized Schur form no
longer satisfy DELZTG=.TRUE. This could also
be caused due to scaling.
=N+3: reordering falied in ZTGSEN.
|