File: zggsvd.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (282 lines) | stat: -rwxr-xr-x 6,972 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
.TH ZGGSVD l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
ZGGSVD - compute the generalized singular value decomposition (GSVD) of an M-by-N complex matrix A and P-by-N complex matrix B
.SH SYNOPSIS
.TP 19
SUBROUTINE ZGGSVD(
JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B,
LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK,
RWORK, IWORK, INFO )
.TP 19
.ti +4
CHARACTER
JOBQ, JOBU, JOBV
.TP 19
.ti +4
INTEGER
INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
.TP 19
.ti +4
INTEGER
IWORK( * )
.TP 19
.ti +4
DOUBLE
PRECISION ALPHA( * ), BETA( * ), RWORK( * )
.TP 19
.ti +4
COMPLEX*16
A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
U( LDU, * ), V( LDV, * ), WORK( * )
.SH PURPOSE
ZGGSVD computes the generalized singular value decomposition (GSVD) of an M-by-N complex matrix A and P-by-N complex matrix B: 
      U'*A*Q = D1*( 0 R ),    V'*B*Q = D2*( 0 R )
.br

where U, V and Q are unitary matrices, and Z' means the conjugate
transpose of Z.  Let K+L = the effective numerical rank of the
matrix (A',B')', then R is a (K+L)-by-(K+L) nonsingular upper
triangular matrix, D1 and D2 are M-by-(K+L) and P-by-(K+L) "diagonal"
matrices and of the following structures, respectively:
.br

If M-K-L >= 0,
.br

                    K  L
.br
       D1 =     K ( I  0 )
.br
                L ( 0  C )
.br
            M-K-L ( 0  0 )
.br

                  K  L
.br
       D2 =   L ( 0  S )
.br
            P-L ( 0  0 )
.br

                N-K-L  K    L
.br
  ( 0 R ) = K (  0   R11  R12 )
.br
            L (  0    0   R22 )
.br
where
.br

  C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
.br
  S = diag( BETA(K+1),  ... , BETA(K+L) ),
.br
  C**2 + S**2 = I.
.br

  R is stored in A(1:K+L,N-K-L+1:N) on exit.
.br

If M-K-L < 0,
.br

                  K M-K K+L-M
.br
       D1 =   K ( I  0    0   )
.br
            M-K ( 0  C    0   )
.br

                    K M-K K+L-M
.br
       D2 =   M-K ( 0  S    0  )
.br
            K+L-M ( 0  0    I  )
.br
              P-L ( 0  0    0  )
.br

                   N-K-L  K   M-K  K+L-M
.br
  ( 0 R ) =     K ( 0    R11  R12  R13  )
.br
              M-K ( 0     0   R22  R23  )
.br
            K+L-M ( 0     0    0   R33  )
.br

where
.br

  C = diag( ALPHA(K+1), ... , ALPHA(M) ),
.br
  S = diag( BETA(K+1),  ... , BETA(M) ),
.br
  C**2 + S**2 = I.
.br

  (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
  ( 0  R22 R23 )
.br
  in B(M-K+1:L,N+M-K-L+1:N) on exit.
.br

The routine computes C, S, R, and optionally the unitary
.br
transformation matrices U, V and Q.
.br

In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
A and B implicitly gives the SVD of A*inv(B):
.br
                     A*inv(B) = U*(D1*inv(D2))*V'.
.br
If ( A',B')' has orthnormal columns, then the GSVD of A and B is also
equal to the CS decomposition of A and B. Furthermore, the GSVD can
be used to derive the solution of the eigenvalue problem:
                     A'*A x = lambda* B'*B x.
.br
In some literature, the GSVD of A and B is presented in the form
                 U'*A*X = ( 0 D1 ),   V'*B*X = ( 0 D2 )
.br
where U and V are orthogonal and X is nonsingular, and D1 and D2 are
``diagonal''.  The former GSVD form can be converted to the latter
form by taking the nonsingular matrix X as
.br

                      X = Q*(  I   0    )
.br
                            (  0 inv(R) )
.br

.SH ARGUMENTS
.TP 8
JOBU    (input) CHARACTER*1
= 'U':  Unitary matrix U is computed;
.br
= 'N':  U is not computed.
.TP 8
JOBV    (input) CHARACTER*1
.br
= 'V':  Unitary matrix V is computed;
.br
= 'N':  V is not computed.
.TP 8
JOBQ    (input) CHARACTER*1
.br
= 'Q':  Unitary matrix Q is computed;
.br
= 'N':  Q is not computed.
.TP 8
M       (input) INTEGER
The number of rows of the matrix A.  M >= 0.
.TP 8
N       (input) INTEGER
The number of columns of the matrices A and B.  N >= 0.
.TP 8
P       (input) INTEGER
The number of rows of the matrix B.  P >= 0.
.TP 8
K       (output) INTEGER
L       (output) INTEGER
On exit, K and L specify the dimension of the subblocks
described in Purpose.
K + L = effective numerical rank of (A',B')'.
.TP 8
A       (input/output) COMPLEX*16 array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, A contains the triangular matrix R, or part of R.
See Purpose for details.
.TP 8
LDA     (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
.TP 8
B       (input/output) COMPLEX*16 array, dimension (LDB,N)
On entry, the P-by-N matrix B.
On exit, B contains part of the triangular matrix R if
M-K-L < 0.  See Purpose for details.
.TP 8
LDB     (input) INTEGER
The leading dimension of the array B. LDB >= max(1,P).
.TP 8
ALPHA   (output) DOUBLE PRECISION array, dimension (N)
BETA    (output) DOUBLE PRECISION array, dimension (N)
On exit, ALPHA and BETA contain the generalized singular
value pairs of A and B;
ALPHA(1:K) = 1,
.br
BETA(1:K)  = 0,
and if M-K-L >= 0,
ALPHA(K+1:K+L) = C,
.br
BETA(K+1:K+L)  = S,
or if M-K-L < 0,
ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
.br
BETA(K+1:M) = S, BETA(M+1:K+L) = 1
and
ALPHA(K+L+1:N) = 0
.br
BETA(K+L+1:N)  = 0
.TP 8
U       (output) COMPLEX*16 array, dimension (LDU,M)
If JOBU = 'U', U contains the M-by-M unitary matrix U.
If JOBU = 'N', U is not referenced.
.TP 8
LDU     (input) INTEGER
The leading dimension of the array U. LDU >= max(1,M) if
JOBU = 'U'; LDU >= 1 otherwise.
.TP 8
V       (output) COMPLEX*16 array, dimension (LDV,P)
If JOBV = 'V', V contains the P-by-P unitary matrix V.
If JOBV = 'N', V is not referenced.
.TP 8
LDV     (input) INTEGER
The leading dimension of the array V. LDV >= max(1,P) if
JOBV = 'V'; LDV >= 1 otherwise.
.TP 8
Q       (output) COMPLEX*16 array, dimension (LDQ,N)
If JOBQ = 'Q', Q contains the N-by-N unitary matrix Q.
If JOBQ = 'N', Q is not referenced.
.TP 8
LDQ     (input) INTEGER
The leading dimension of the array Q. LDQ >= max(1,N) if
JOBQ = 'Q'; LDQ >= 1 otherwise.
.TP 8
WORK    (workspace) COMPLEX*16 array, dimension (max(3*N,M,P)+N)
.TP 8
RWORK   (workspace) DOUBLE PRECISION array, dimension (2*N)
.TP 8
IWORK   (workspace/output) INTEGER array, dimension (N)
On exit, IWORK stores the sorting information. More
precisely, the following loop will sort ALPHA
for I = K+1, min(M,K+L)
swap ALPHA(I) and ALPHA(IWORK(I))
endfor
such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
.TP 8
INFO    (output)INTEGER
= 0:  successful exit.
.br
< 0:  if INFO = -i, the i-th argument had an illegal value.
.br
> 0:  if INFO = 1, the Jacobi-type procedure failed to
converge.  For further details, see subroutine ZTGSJA.
.SH PARAMETERS
.TP 8
TOLA    DOUBLE PRECISION
TOLB    DOUBLE PRECISION
TOLA and TOLB are the thresholds to determine the effective
rank of (A',B')'. Generally, they are set to
TOLA = MAX(M,N)*norm(A)*MAZHEPS,
TOLB = MAX(P,N)*norm(B)*MAZHEPS.
The size of TOLA and TOLB may affect the size of backward
errors of the decomposition.

Further Details
===============

2-96 Based on modifications by
Ming Gu and Huan Ren, Computer Science Division, University of
California at Berkeley, USA