1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
.TH ZHETD2 l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
ZHETD2 - reduce a complex Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity transformation
.SH SYNOPSIS
.TP 19
SUBROUTINE ZHETD2(
UPLO, N, A, LDA, D, E, TAU, INFO )
.TP 19
.ti +4
CHARACTER
UPLO
.TP 19
.ti +4
INTEGER
INFO, LDA, N
.TP 19
.ti +4
DOUBLE
PRECISION D( * ), E( * )
.TP 19
.ti +4
COMPLEX*16
A( LDA, * ), TAU( * )
.SH PURPOSE
ZHETD2 reduces a complex Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity transformation: Q' * A * Q = T.
.br
.SH ARGUMENTS
.TP 8
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
Hermitian matrix A is stored:
.br
= 'U': Upper triangular
.br
= 'L': Lower triangular
.TP 8
N (input) INTEGER
The order of the matrix A. N >= 0.
.TP 8
A (input/output) COMPLEX*16 array, dimension (LDA,N)
On entry, the Hermitian matrix A. If UPLO = 'U', the leading
n-by-n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading n-by-n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.
On exit, if UPLO = 'U', the diagonal and first superdiagonal
of A are overwritten by the corresponding elements of the
tridiagonal matrix T, and the elements above the first
superdiagonal, with the array TAU, represent the unitary
matrix Q as a product of elementary reflectors; if UPLO
= 'L', the diagonal and first subdiagonal of A are over-
written by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with
the array TAU, represent the unitary matrix Q as a product
of elementary reflectors. See Further Details.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
.TP 8
D (output) DOUBLE PRECISION array, dimension (N)
The diagonal elements of the tridiagonal matrix T:
D(i) = A(i,i).
.TP 8
E (output) DOUBLE PRECISION array, dimension (N-1)
The off-diagonal elements of the tridiagonal matrix T:
E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
.TP 8
TAU (output) COMPLEX*16 array, dimension (N-1)
The scalar factors of the elementary reflectors (see Further
Details).
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value.
.SH FURTHER DETAILS
If UPLO = 'U', the matrix Q is represented as a product of elementary
reflectors
.br
Q = H(n-1) . . . H(2) H(1).
.br
Each H(i) has the form
.br
H(i) = I - tau * v * v'
.br
where tau is a complex scalar, and v is a complex vector with
v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
.br
A(1:i-1,i+1), and tau in TAU(i).
.br
If UPLO = 'L', the matrix Q is represented as a product of elementary
reflectors
.br
Q = H(1) H(2) . . . H(n-1).
.br
Each H(i) has the form
.br
H(i) = I - tau * v * v'
.br
where tau is a complex scalar, and v is a complex vector with
v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
and tau in TAU(i).
.br
The contents of A on exit are illustrated by the following examples
with n = 5:
.br
if UPLO = 'U': if UPLO = 'L':
.br
( d e v2 v3 v4 ) ( d )
( d e v3 v4 ) ( e d )
( d e v4 ) ( v1 e d )
( d e ) ( v1 v2 e d )
( d ) ( v1 v2 v3 e d )
where d and e denote diagonal and off-diagonal elements of T, and vi
denotes an element of the vector defining H(i).
.br
|