File: zhpevd.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (134 lines) | stat: -rwxr-xr-x 4,549 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
.TH ZHPEVD l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
ZHPEVD - compute all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A in packed storage
.SH SYNOPSIS
.TP 19
SUBROUTINE ZHPEVD(
JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
RWORK, LRWORK, IWORK, LIWORK, INFO )
.TP 19
.ti +4
CHARACTER
JOBZ, UPLO
.TP 19
.ti +4
INTEGER
INFO, LDZ, LIWORK, LRWORK, LWORK, N
.TP 19
.ti +4
INTEGER
IWORK( * )
.TP 19
.ti +4
DOUBLE
PRECISION RWORK( * ), W( * )
.TP 19
.ti +4
COMPLEX*16
AP( * ), WORK( * ), Z( LDZ, * )
.SH PURPOSE
ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of a complex Hermitian matrix A in packed storage. If eigenvectors are desired, it uses a divide and conquer algorithm.
.br

The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
.br

.SH ARGUMENTS
.TP 8
JOBZ    (input) CHARACTER*1
= 'N':  Compute eigenvalues only;
.br
= 'V':  Compute eigenvalues and eigenvectors.
.TP 8
UPLO    (input) CHARACTER*1
.br
= 'U':  Upper triangle of A is stored;
.br
= 'L':  Lower triangle of A is stored.
.TP 8
N       (input) INTEGER
The order of the matrix A.  N >= 0.
.TP 8
AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array.  The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.

On exit, AP is overwritten by values generated during the
reduction to tridiagonal form.  If UPLO = 'U', the diagonal
and first superdiagonal of the tridiagonal matrix T overwrite
the corresponding elements of A, and if UPLO = 'L', the
diagonal and first subdiagonal of T overwrite the
corresponding elements of A.
.TP 8
W       (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
.TP 8
Z       (output) COMPLEX*16 array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
eigenvectors of the matrix A, with the i-th column of Z
holding the eigenvector associated with W(i).
If JOBZ = 'N', then Z is not referenced.
.TP 8
LDZ     (input) INTEGER
The leading dimension of the array Z.  LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
.TP 8
WORK    (workspace/output) COMPLEX*16 array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
.TP 8
LWORK   (input) INTEGER
The dimension of array WORK.
If N <= 1,               LWORK must be at least 1.
If JOBZ = 'N' and N > 1, LWORK must be at least N.
If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
.TP 8
RWORK   (workspace/output) DOUBLE PRECISION array,
dimension (LRWORK)
On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
.TP 8
LRWORK  (input) INTEGER
The dimension of array RWORK.
If N <= 1,               LRWORK must be at least 1.
If JOBZ = 'N' and N > 1, LRWORK must be at least N.
If JOBZ = 'V' and N > 1, LRWORK must be at least
1 + 5*N + 2*N**2.

If LRWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the RWORK array,
returns this value as the first entry of the RWORK array, and
no error message related to LRWORK is issued by XERBLA.
.TP 8
IWORK   (workspace/output) INTEGER array, dimension (LIWORK)
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
.TP 8
LIWORK  (input) INTEGER
The dimension of array IWORK.
If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.

If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
.TP 8
INFO    (output) INTEGER
= 0:  successful exit
.br
< 0:  if INFO = -i, the i-th argument had an illegal value.
.br
> 0:  if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.