1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
.TH ZHPGVD l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
ZHPGVD - compute all the eigenvalues and, optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x
.SH SYNOPSIS
.TP 19
SUBROUTINE ZHPGVD(
ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
.TP 19
.ti +4
CHARACTER
JOBZ, UPLO
.TP 19
.ti +4
INTEGER
INFO, ITYPE, LDZ, LIWORK, LRWORK, LWORK, N
.TP 19
.ti +4
INTEGER
IWORK( * )
.TP 19
.ti +4
DOUBLE
PRECISION RWORK( * ), W( * )
.TP 19
.ti +4
COMPLEX*16
AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
.SH PURPOSE
ZHPGVD computes all the eigenvalues and, optionally, the eigenvectors of a complex generalized Hermitian-definite eigenproblem, of the form A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and B are assumed to be Hermitian, stored in packed format, and B is also
positive definite.
.br
If eigenvectors are desired, it uses a divide and conquer algorithm.
The divide and conquer algorithm makes very mild assumptions about
floating point arithmetic. It will work on machines with a guard
digit in add/subtract, or on those binary machines without guard
digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
Cray-2. It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.
.br
.SH ARGUMENTS
.TP 8
ITYPE (input) INTEGER
Specifies the problem type to be solved:
.br
= 1: A*x = (lambda)*B*x
.br
= 2: A*B*x = (lambda)*x
.br
= 3: B*A*x = (lambda)*x
.TP 8
JOBZ (input) CHARACTER*1
.br
= 'N': Compute eigenvalues only;
.br
= 'V': Compute eigenvalues and eigenvectors.
.TP 8
UPLO (input) CHARACTER*1
.br
= 'U': Upper triangles of A and B are stored;
.br
= 'L': Lower triangles of A and B are stored.
.TP 8
N (input) INTEGER
The order of the matrices A and B. N >= 0.
.TP 8
AP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
On exit, the contents of AP are destroyed.
.TP 8
BP (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
B, packed columnwise in a linear array. The j-th column of B
is stored in the array BP as follows:
if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
On exit, the triangular factor U or L from the Cholesky
factorization B = U**H*U or B = L*L**H, in the same storage
format as B.
.TP 8
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
.TP 8
Z (output) COMPLEX*16 array, dimension (LDZ, N)
If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
eigenvectors. The eigenvectors are normalized as follows:
if ITYPE = 1 or 2, Z**H*B*Z = I;
if ITYPE = 3, Z**H*inv(B)*Z = I.
If JOBZ = 'N', then Z is not referenced.
.TP 8
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
JOBZ = 'V', LDZ >= max(1,N).
.TP 8
WORK (workspace) COMPLEX*16 array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
.TP 8
LWORK (input) INTEGER
The dimension of array WORK.
If N <= 1, LWORK >= 1.
If JOBZ = 'N' and N > 1, LWORK >= N.
If JOBZ = 'V' and N > 1, LWORK >= 2*N.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
.TP 8
RWORK (workspace) DOUBLE PRECISION array, dimension (LRWORK)
On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
.TP 8
LRWORK (input) INTEGER
The dimension of array RWORK.
If N <= 1, LRWORK >= 1.
If JOBZ = 'N' and N > 1, LRWORK >= N.
If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
If LRWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the RWORK array,
returns this value as the first entry of the RWORK array, and
no error message related to LRWORK is issued by XERBLA.
.TP 8
IWORK (workspace/output) INTEGER array, dimension (LIWORK)
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
.TP 8
LIWORK (input) INTEGER
The dimension of array IWORK.
If JOBZ = 'N' or N <= 1, LIWORK >= 1.
If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value
.br
> 0: ZPPTRF or ZHPEVD returned an error code:
.br
<= N: if INFO = i, ZHPEVD failed to converge;
i off-diagonal elements of an intermediate
tridiagonal form did not convergeto zero;
> N: if INFO = N + i, for 1 <= i <= n, then the leading
minor of order i of B is not positive definite.
The factorization of B could not be completed and
no eigenvalues or eigenvectors were computed.
.SH FURTHER DETAILS
Based on contributions by
.br
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
|