File: zhpsv.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (117 lines) | stat: -rwxr-xr-x 3,404 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
.TH ZHPSV l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
ZHPSV - compute the solution to a complex system of linear equations A * X = B,
.SH SYNOPSIS
.TP 18
SUBROUTINE ZHPSV(
UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
.TP 18
.ti +4
CHARACTER
UPLO
.TP 18
.ti +4
INTEGER
INFO, LDB, N, NRHS
.TP 18
.ti +4
INTEGER
IPIV( * )
.TP 18
.ti +4
COMPLEX*16
AP( * ), B( LDB, * )
.SH PURPOSE
ZHPSV computes the solution to a complex system of linear equations A * X = B, where A is an N-by-N Hermitian matrix stored in packed format and X
and B are N-by-NRHS matrices.
.br

The diagonal pivoting method is used to factor A as
.br
   A = U * D * U**H,  if UPLO = 'U', or
.br
   A = L * D * L**H,  if UPLO = 'L',
.br
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, D is Hermitian and block diagonal with 1-by-1
and 2-by-2 diagonal blocks.  The factored form of A is then used to
solve the system of equations A * X = B.
.br

.SH ARGUMENTS
.TP 8
UPLO    (input) CHARACTER*1
= 'U':  Upper triangle of A is stored;
.br
= 'L':  Lower triangle of A is stored.
.TP 8
N       (input) INTEGER
The number of linear equations, i.e., the order of the
matrix A.  N >= 0.
.TP 8
NRHS    (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B.  NRHS >= 0.
.TP 8
AP      (input/output) COMPLEX*16 array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the Hermitian matrix
A, packed columnwise in a linear array.  The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.

On exit, the block diagonal matrix D and the multipliers used
to obtain the factor U or L from the factorization
A = U*D*U**H or A = L*D*L**H as computed by ZHPTRF, stored as
a packed triangular matrix in the same storage format as A.
.TP 8
IPIV    (output) INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by ZHPTRF.  If IPIV(k) > 0, then rows and columns
k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
then rows and columns k-1 and -IPIV(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
-IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.
.TP 8
B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.
.TP 8
LDB     (input) INTEGER
The leading dimension of the array B.  LDB >= max(1,N).
.TP 8
INFO    (output) INTEGER
= 0:  successful exit
.br
< 0:  if INFO = -i, the i-th argument had an illegal value
.br
> 0:  if INFO = i, D(i,i) is exactly zero.  The factorization
has been completed, but the block diagonal matrix D is
exactly singular, so the solution could not be
computed.
.SH FURTHER DETAILS
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
.br

Two-dimensional storage of the Hermitian matrix A:
.br

   a11 a12 a13 a14
.br
       a22 a23 a24
.br
           a33 a34     (aij = conjg(aji))
.br
               a44
.br

Packed storage of the upper triangle of A:
.br

AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]