1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
.TH ZHSEIN l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
ZHSEIN - use inverse iteration to find specified right and/or left eigenvectors of a complex upper Hessenberg matrix H
.SH SYNOPSIS
.TP 19
SUBROUTINE ZHSEIN(
SIDE, EIGSRC, INITV, SELECT, N, H, LDH, W, VL,
LDVL, VR, LDVR, MM, M, WORK, RWORK, IFAILL,
IFAILR, INFO )
.TP 19
.ti +4
CHARACTER
EIGSRC, INITV, SIDE
.TP 19
.ti +4
INTEGER
INFO, LDH, LDVL, LDVR, M, MM, N
.TP 19
.ti +4
LOGICAL
SELECT( * )
.TP 19
.ti +4
INTEGER
IFAILL( * ), IFAILR( * )
.TP 19
.ti +4
DOUBLE
PRECISION RWORK( * )
.TP 19
.ti +4
COMPLEX*16
H( LDH, * ), VL( LDVL, * ), VR( LDVR, * ),
W( * ), WORK( * )
.SH PURPOSE
ZHSEIN uses inverse iteration to find specified right and/or left eigenvectors of a complex upper Hessenberg matrix H.
The right eigenvector x and the left eigenvector y of the matrix H
corresponding to an eigenvalue w are defined by:
.br
H * x = w * x, y**h * H = w * y**h
.br
where y**h denotes the conjugate transpose of the vector y.
.SH ARGUMENTS
.TP 8
SIDE (input) CHARACTER*1
= 'R': compute right eigenvectors only;
.br
= 'L': compute left eigenvectors only;
.br
= 'B': compute both right and left eigenvectors.
.TP 8
EIGSRC (input) CHARACTER*1
.br
Specifies the source of eigenvalues supplied in W:
.br
= 'Q': the eigenvalues were found using ZHSEQR; thus, if
H has zero subdiagonal elements, and so is
block-triangular, then the j-th eigenvalue can be
assumed to be an eigenvalue of the block containing
the j-th row/column. This property allows ZHSEIN to
perform inverse iteration on just one diagonal block.
= 'N': no assumptions are made on the correspondence
between eigenvalues and diagonal blocks. In this
case, ZHSEIN must always perform inverse iteration
using the whole matrix H.
.TP 8
INITV (input) CHARACTER*1
= 'N': no initial vectors are supplied;
.br
= 'U': user-supplied initial vectors are stored in the arrays
VL and/or VR.
.TP 8
SELECT (input) LOGICAL array, dimension (N)
Specifies the eigenvectors to be computed. To select the
eigenvector corresponding to the eigenvalue W(j),
SELECT(j) must be set to .TRUE..
.TP 8
N (input) INTEGER
The order of the matrix H. N >= 0.
.TP 8
H (input) COMPLEX*16 array, dimension (LDH,N)
The upper Hessenberg matrix H.
.TP 8
LDH (input) INTEGER
The leading dimension of the array H. LDH >= max(1,N).
.TP 8
W (input/output) COMPLEX*16 array, dimension (N)
On entry, the eigenvalues of H.
On exit, the real parts of W may have been altered since
close eigenvalues are perturbed slightly in searching for
independent eigenvectors.
.TP 8
VL (input/output) COMPLEX*16 array, dimension (LDVL,MM)
On entry, if INITV = 'U' and SIDE = 'L' or 'B', VL must
contain starting vectors for the inverse iteration for the
left eigenvectors; the starting vector for each eigenvector
must be in the same column in which the eigenvector will be
stored.
On exit, if SIDE = 'L' or 'B', the left eigenvectors
specified by SELECT will be stored consecutively in the
columns of VL, in the same order as their eigenvalues.
If SIDE = 'R', VL is not referenced.
.TP 8
LDVL (input) INTEGER
The leading dimension of the array VL.
LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
.TP 8
VR (input/output) COMPLEX*16 array, dimension (LDVR,MM)
On entry, if INITV = 'U' and SIDE = 'R' or 'B', VR must
contain starting vectors for the inverse iteration for the
right eigenvectors; the starting vector for each eigenvector
must be in the same column in which the eigenvector will be
stored.
On exit, if SIDE = 'R' or 'B', the right eigenvectors
specified by SELECT will be stored consecutively in the
columns of VR, in the same order as their eigenvalues.
If SIDE = 'L', VR is not referenced.
.TP 8
LDVR (input) INTEGER
The leading dimension of the array VR.
LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
.TP 8
MM (input) INTEGER
The number of columns in the arrays VL and/or VR. MM >= M.
.TP 8
M (output) INTEGER
The number of columns in the arrays VL and/or VR required to
store the eigenvectors (= the number of .TRUE. elements in
SELECT).
.TP 8
WORK (workspace) COMPLEX*16 array, dimension (N*N)
.TP 8
RWORK (workspace) DOUBLE PRECISION array, dimension (N)
.TP 8
IFAILL (output) INTEGER array, dimension (MM)
If SIDE = 'L' or 'B', IFAILL(i) = j > 0 if the left
eigenvector in the i-th column of VL (corresponding to the
eigenvalue w(j)) failed to converge; IFAILL(i) = 0 if the
eigenvector converged satisfactorily.
If SIDE = 'R', IFAILL is not referenced.
.TP 8
IFAILR (output) INTEGER array, dimension (MM)
If SIDE = 'R' or 'B', IFAILR(i) = j > 0 if the right
eigenvector in the i-th column of VR (corresponding to the
eigenvalue w(j)) failed to converge; IFAILR(i) = 0 if the
eigenvector converged satisfactorily.
If SIDE = 'L', IFAILR is not referenced.
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value
.br
> 0: if INFO = i, i is the number of eigenvectors which
failed to converge; see IFAILL and IFAILR for further
details.
.SH FURTHER DETAILS
Each eigenvector is normalized so that the element of largest
magnitude has magnitude 1; here the magnitude of a complex number
(x,y) is taken to be |x|+|y|.
.br
|