File: zlalsa.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (159 lines) | stat: -rwxr-xr-x 5,464 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
.TH ZLALSA l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
ZLALSA - i an itermediate step in solving the least squares problem by computing the SVD of the coefficient matrix in compact form (The singular vectors are computed as products of simple orthorgonal matrices.)
.SH SYNOPSIS
.TP 19
SUBROUTINE ZLALSA(
ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U,
LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR,
GIVCOL, LDGCOL, PERM, GIVNUM, C, S, RWORK,
IWORK, INFO )
.TP 19
.ti +4
INTEGER
ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS,
SMLSIZ
.TP 19
.ti +4
INTEGER
GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
K( * ), PERM( LDGCOL, * )
.TP 19
.ti +4
DOUBLE
PRECISION C( * ), DIFL( LDU, * ), DIFR( LDU, * ),
GIVNUM( LDU, * ), POLES( LDU, * ), RWORK( * ),
S( * ), U( LDU, * ), VT( LDU, * ), Z( LDU, * )
.TP 19
.ti +4
COMPLEX*16
B( LDB, * ), BX( LDBX, * )
.SH PURPOSE
ZLALSA is an itermediate step in solving the least squares problem by computing the SVD of the coefficient matrix in compact form (The singular vectors are computed as products of simple orthorgonal matrices.). 
If ICOMPQ = 0, ZLALSA applies the inverse of the left singular vector
matrix of an upper bidiagonal matrix to the right hand side; and if
ICOMPQ = 1, ZLALSA applies the right singular vector matrix to the
right hand side. The singular vector matrices were generated in
compact form by ZLALSA.
.br

.SH ARGUMENTS

ICOMPQ (input) INTEGER
Specifies whether the left or the right singular vector
matrix is involved.
= 0: Left singular vector matrix
.br
= 1: Right singular vector matrix

SMLSIZ (input) INTEGER
The maximum size of the subproblems at the bottom of the
computation tree.
.TP 7
N      (input) INTEGER
The row and column dimensions of the upper bidiagonal matrix.
.TP 7
NRHS   (input) INTEGER
The number of columns of B and BX. NRHS must be at least 1.
.TP 7
B      (input) COMPLEX*16 array, dimension ( LDB, NRHS )
On input, B contains the right hand sides of the least
squares problem in rows 1 through M. On output, B contains
the solution X in rows 1 through N.
.TP 7
LDB    (input) INTEGER
The leading dimension of B in the calling subprogram.
LDB must be at least max(1,MAX( M, N ) ).
.TP 7
BX     (output) COMPLEX*16 array, dimension ( LDBX, NRHS )
On exit, the result of applying the left or right singular
vector matrix to B.
.TP 7
LDBX   (input) INTEGER
The leading dimension of BX.
.TP 7
U      (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ).
On entry, U contains the left singular vector matrices of all
subproblems at the bottom level.
.TP 7
LDU    (input) INTEGER, LDU = > N.
The leading dimension of arrays U, VT, DIFL, DIFR,
POLES, GIVNUM, and Z.
.TP 7
VT     (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ).
On entry, VT' contains the right singular vector matrices of
all subproblems at the bottom level.
.TP 7
K      (input) INTEGER array, dimension ( N ).
.TP 7
DIFL   (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1.
.TP 7
DIFR   (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record
distances between singular values on the I-th level and
singular values on the (I -1)-th level, and DIFR(*, 2 * I)
record the normalizing factors of the right singular vectors
matrices of subproblems on I-th level.
.TP 7
Z      (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ).
On entry, Z(1, I) contains the components of the deflation-
adjusted updating row vector for subproblems on the I-th
level.
.TP 7
POLES  (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old
singular values involved in the secular equations on the I-th
level.

GIVPTR (input) INTEGER array, dimension ( N ).
On entry, GIVPTR( I ) records the number of Givens
rotations performed on the I-th problem on the computation
tree.

GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ).
On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the
locations of Givens rotations performed on the I-th level on
the computation tree.

LDGCOL (input) INTEGER, LDGCOL = > N.
The leading dimension of arrays GIVCOL and PERM.
.TP 7
PERM   (input) INTEGER array, dimension ( LDGCOL, NLVL ).
On entry, PERM(*, I) records permutations done on the I-th
level of the computation tree.

GIVNUM (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ).
On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S-
values of Givens rotations performed on the I-th level on the
computation tree.
.TP 7
C      (input) DOUBLE PRECISION array, dimension ( N ).
On entry, if the I-th subproblem is not square,
C( I ) contains the C-value of a Givens rotation related to
the right null space of the I-th subproblem.
.TP 7
S      (input) DOUBLE PRECISION array, dimension ( N ).
On entry, if the I-th subproblem is not square,
S( I ) contains the S-value of a Givens rotation related to
the right null space of the I-th subproblem.
.TP 7
RWORK  (workspace) DOUBLE PRECISION array, dimension at least
max ( N, (SMLSZ+1)*NRHS*3 ).
.TP 7
IWORK  (workspace) INTEGER array.
The dimension must be at least 3 * N
.TP 7
INFO   (output) INTEGER
= 0:  successful exit.
.br
< 0:  if INFO = -i, the i-th argument had an illegal value.
.SH FURTHER DETAILS
Based on contributions by
.br
   Ming Gu and Ren-Cang Li, Computer Science Division, University of
     California at Berkeley, USA
.br
   Osni Marques, LBNL/NERSC, USA
.br