File: zlargv.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (65 lines) | stat: -rwxr-xr-x 1,714 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
.TH ZLARGV l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
ZLARGV - generate a vector of complex plane rotations with real cosines, determined by elements of the complex vectors x and y
.SH SYNOPSIS
.TP 19
SUBROUTINE ZLARGV(
N, X, INCX, Y, INCY, C, INCC )
.TP 19
.ti +4
INTEGER
INCC, INCX, INCY, N
.TP 19
.ti +4
DOUBLE
PRECISION C( * )
.TP 19
.ti +4
COMPLEX*16
X( * ), Y( * )
.SH PURPOSE
ZLARGV generates a vector of complex plane rotations with real cosines, determined by elements of the complex vectors x and y. For i = 1,2,...,n
.br

   (        c(i)   s(i) ) ( x(i) ) = ( r(i) )
.br
   ( -conjg(s(i))  c(i) ) ( y(i) ) = (   0  )
.br

   where c(i)**2 + ABS(s(i))**2 = 1
.br

The following conventions are used (these are the same as in ZLARTG,
but differ from the BLAS1 routine ZROTG):
.br
   If y(i)=0, then c(i)=1 and s(i)=0.
.br
   If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real.

.SH ARGUMENTS
.TP 8
N       (input) INTEGER
The number of plane rotations to be generated.
.TP 8
X       (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCX)
On entry, the vector x.
On exit, x(i) is overwritten by r(i), for i = 1,...,n.
.TP 8
INCX    (input) INTEGER
The increment between elements of X. INCX > 0.
.TP 8
Y       (input/output) COMPLEX*16 array, dimension (1+(N-1)*INCY)
On entry, the vector y.
On exit, the sines of the plane rotations.
.TP 8
INCY    (input) INTEGER
The increment between elements of Y. INCY > 0.
.TP 8
C       (output) DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
The cosines of the plane rotations.
.TP 8
INCC    (input) INTEGER
The increment between elements of C. INCC > 0.
.SH FURTHER DETAILS
6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel