File: zstedc.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (139 lines) | stat: -rwxr-xr-x 4,771 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
.TH ZSTEDC l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
ZSTEDC - compute all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method
.SH SYNOPSIS
.TP 19
SUBROUTINE ZSTEDC(
COMPZ, N, D, E, Z, LDZ, WORK, LWORK, RWORK,
LRWORK, IWORK, LIWORK, INFO )
.TP 19
.ti +4
CHARACTER
COMPZ
.TP 19
.ti +4
INTEGER
INFO, LDZ, LIWORK, LRWORK, LWORK, N
.TP 19
.ti +4
INTEGER
IWORK( * )
.TP 19
.ti +4
DOUBLE
PRECISION D( * ), E( * ), RWORK( * )
.TP 19
.ti +4
COMPLEX*16
WORK( * ), Z( LDZ, * )
.SH PURPOSE
ZSTEDC computes all eigenvalues and, optionally, eigenvectors of a symmetric tridiagonal matrix using the divide and conquer method. The eigenvectors of a full or band complex Hermitian matrix can also
be found if ZHETRD or ZHPTRD or ZHBTRD has been used to reduce this
matrix to tridiagonal form.
.br

This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none.  See DLAED3 for details.

.SH ARGUMENTS
.TP 8
COMPZ   (input) CHARACTER*1
= 'N':  Compute eigenvalues only.
.br
= 'I':  Compute eigenvectors of tridiagonal matrix also.
.br
= 'V':  Compute eigenvectors of original Hermitian matrix
also.  On entry, Z contains the unitary matrix used
to reduce the original matrix to tridiagonal form.
.TP 8
N       (input) INTEGER
The dimension of the symmetric tridiagonal matrix.  N >= 0.
.TP 8
D       (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the diagonal elements of the tridiagonal matrix.
On exit, if INFO = 0, the eigenvalues in ascending order.
.TP 8
E       (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the subdiagonal elements of the tridiagonal matrix.
On exit, E has been destroyed.
.TP 8
Z       (input/output) COMPLEX*16 array, dimension (LDZ,N)
On entry, if COMPZ = 'V', then Z contains the unitary
matrix used in the reduction to tridiagonal form.
On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
orthonormal eigenvectors of the original Hermitian matrix,
and if COMPZ = 'I', Z contains the orthonormal eigenvectors
of the symmetric tridiagonal matrix.
If  COMPZ = 'N', then Z is not referenced.
.TP 8
LDZ     (input) INTEGER
The leading dimension of the array Z.  LDZ >= 1.
If eigenvectors are desired, then LDZ >= max(1,N).
.TP 8
WORK    (workspace/output) COMPLEX*16 array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
.TP 8
LWORK   (input) INTEGER
The dimension of the array WORK.
If COMPZ = 'N' or 'I', or N <= 1, LWORK must be at least 1.
If COMPZ = 'V' and N > 1, LWORK must be at least N*N.

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
.TP 8
RWORK   (workspace/output) DOUBLE PRECISION array,
dimension (LRWORK)
On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
.TP 8
LRWORK  (input) INTEGER
The dimension of the array RWORK.
If COMPZ = 'N' or N <= 1, LRWORK must be at least 1.
If COMPZ = 'V' and N > 1, LRWORK must be at least
1 + 3*N + 2*N*lg N + 3*N**2 ,
where lg( N ) = smallest integer k such
that 2**k >= N.
If COMPZ = 'I' and N > 1, LRWORK must be at least
1 + 4*N + 2*N**2 .

If LRWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the RWORK array,
returns this value as the first entry of the RWORK array, and
no error message related to LRWORK is issued by XERBLA.
.TP 8
IWORK   (workspace/output) INTEGER array, dimension (LIWORK)
On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
.TP 8
LIWORK  (input) INTEGER
The dimension of the array IWORK.
If COMPZ = 'N' or N <= 1, LIWORK must be at least 1.
If COMPZ = 'V' or N > 1,  LIWORK must be at least
6 + 6*N + 5*N*lg N.
If COMPZ = 'I' or N > 1,  LIWORK must be at least
3 + 5*N .

If LIWORK = -1, then a workspace query is assumed; the
routine only calculates the optimal size of the IWORK array,
returns this value as the first entry of the IWORK array, and
no error message related to LIWORK is issued by XERBLA.
.TP 8
INFO    (output) INTEGER
= 0:  successful exit.
.br
< 0:  if INFO = -i, the i-th argument had an illegal value.
.br
> 0:  The algorithm failed to compute an eigenvalue while
working on the submatrix lying in rows and columns
INFO/(N+1) through mod(INFO,N+1).
.SH FURTHER DETAILS
Based on contributions by
.br
   Jeff Rutter, Computer Science Division, University of California
   at Berkeley, USA
.br