File: ztbtrs.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (86 lines) | stat: -rwxr-xr-x 2,373 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
.TH ZTBTRS l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
ZTBTRS - solve a triangular system of the form  A * X = B, A**T * X = B, or A**H * X = B,
.SH SYNOPSIS
.TP 19
SUBROUTINE ZTBTRS(
UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, B,
LDB, INFO )
.TP 19
.ti +4
CHARACTER
DIAG, TRANS, UPLO
.TP 19
.ti +4
INTEGER
INFO, KD, LDAB, LDB, N, NRHS
.TP 19
.ti +4
COMPLEX*16
AB( LDAB, * ), B( LDB, * )
.SH PURPOSE
ZTBTRS solves a triangular system of the form A * X = B, A**T * X = B, or A**H * X = B, 
where A is a triangular band matrix of order N, and B is an
N-by-NRHS matrix.  A check is made to verify that A is nonsingular.

.SH ARGUMENTS
.TP 8
UPLO    (input) CHARACTER*1
= 'U':  A is upper triangular;
.br
= 'L':  A is lower triangular.
.TP 8
TRANS   (input) CHARACTER*1
.br
Specifies the form of the system of equations:
.br
= 'N':  A * X = B     (No transpose)
.br
= 'T':  A**T * X = B  (Transpose)
.br
= 'C':  A**H * X = B  (Conjugate transpose)
.TP 8
DIAG    (input) CHARACTER*1
.br
= 'N':  A is non-unit triangular;
.br
= 'U':  A is unit triangular.
.TP 8
N       (input) INTEGER
The order of the matrix A.  N >= 0.
.TP 8
KD      (input) INTEGER
The number of superdiagonals or subdiagonals of the
triangular band matrix A.  KD >= 0.
.TP 8
NRHS    (input) INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B.  NRHS >= 0.
.TP 8
AB      (input) COMPLEX*16 array, dimension (LDAB,N)
The upper or lower triangular band matrix A, stored in the
first kd+1 rows of AB.  The j-th column of A is stored
in the j-th column of the array AB as follows:
if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
If DIAG = 'U', the diagonal elements of A are not referenced
and are assumed to be 1.
.TP 8
LDAB    (input) INTEGER
The leading dimension of the array AB.  LDAB >= KD+1.
.TP 8
B       (input/output) COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, if INFO = 0, the solution matrix X.
.TP 8
LDB     (input) INTEGER
The leading dimension of the array B.  LDB >= max(1,N).
.TP 8
INFO    (output) INTEGER
= 0:  successful exit
.br
< 0:  if INFO = -i, the i-th argument had an illegal value
.br
> 0:  if INFO = i, the i-th diagonal element of A is zero,
indicating that the matrix is singular and the
solutions X have not been computed.