1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
.TH ZTGSYL l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
ZTGSYL - solve the generalized Sylvester equation
.SH SYNOPSIS
.TP 19
SUBROUTINE ZTGSYL(
TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK,
IWORK, INFO )
.TP 19
.ti +4
CHARACTER
TRANS
.TP 19
.ti +4
INTEGER
IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF,
LWORK, M, N
.TP 19
.ti +4
DOUBLE
PRECISION DIF, SCALE
.TP 19
.ti +4
INTEGER
IWORK( * )
.TP 19
.ti +4
COMPLEX*16
A( LDA, * ), B( LDB, * ), C( LDC, * ),
D( LDD, * ), E( LDE, * ), F( LDF, * ),
WORK( * )
.SH PURPOSE
ZTGSYL solves the generalized Sylvester equation:
A * R - L * B = scale * C (1)
.br
D * R - L * E = scale * F
.br
where R and L are unknown m-by-n matrices, (A, D), (B, E) and
(C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n,
respectively, with complex entries. A, B, D and E are upper
triangular (i.e., (A,D) and (B,E) in generalized Schur form).
The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1
.br
is an output scaling factor chosen to avoid overflow.
.br
In matrix notation (1) is equivalent to solve Zx = scale*b, where Z
is defined as
.br
Z = [ kron(In, A) -kron(B', Im) ] (2)
.br
[ kron(In, D) -kron(E', Im) ],
.br
Here Ix is the identity matrix of size x and X' is the conjugate
transpose of X. Kron(X, Y) is the Kronecker product between the
matrices X and Y.
.br
If TRANS = 'C', y in the conjugate transposed system Z'*y = scale*b
is solved for, which is equivalent to solve for R and L in
A' * R + D' * L = scale * C (3)
.br
R * B' + L * E' = scale * -F
.br
This case (TRANS = 'C') is used to compute an one-norm-based estimate
of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D)
and (B,E), using ZLACON.
.br
If IJOB >= 1, ZTGSYL computes a Frobenius norm-based estimate of
Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the
reciprocal of the smallest singular value of Z.
.br
This is a level-3 BLAS algorithm.
.br
.SH ARGUMENTS
.TP 8
TRANS (input) CHARACTER*1
= 'N': solve the generalized sylvester equation (1).
.br
= 'C': solve the "conjugate transposed" system (3).
.TP 8
IJOB (input) INTEGER
Specifies what kind of functionality to be performed.
=0: solve (1) only.
.br
=1: The functionality of 0 and 3.
.br
=2: The functionality of 0 and 4.
.br
=3: Only an estimate of Dif[(A,D), (B,E)] is computed.
(look ahead strategy is used).
=4: Only an estimate of Dif[(A,D), (B,E)] is computed.
(ZGECON on sub-systems is used).
Not referenced if TRANS = 'C'.
.TP 8
M (input) INTEGER
The order of the matrices A and D, and the row dimension of
the matrices C, F, R and L.
.TP 8
N (input) INTEGER
The order of the matrices B and E, and the column dimension
of the matrices C, F, R and L.
.TP 8
A (input) COMPLEX*16 array, dimension (LDA, M)
The upper triangular matrix A.
.TP 8
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1, M).
.TP 8
B (input) COMPLEX*16 array, dimension (LDB, N)
The upper triangular matrix B.
.TP 8
LDB (input) INTEGER
The leading dimension of the array B. LDB >= max(1, N).
.TP 8
C (input/output) COMPLEX*16 array, dimension (LDC, N)
On entry, C contains the right-hand-side of the first matrix
equation in (1) or (3).
On exit, if IJOB = 0, 1 or 2, C has been overwritten by
the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R,
the solution achieved during the computation of the
Dif-estimate.
.TP 8
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1, M).
.TP 8
D (input) COMPLEX*16 array, dimension (LDD, M)
The upper triangular matrix D.
.TP 8
LDD (input) INTEGER
The leading dimension of the array D. LDD >= max(1, M).
.TP 8
E (input) COMPLEX*16 array, dimension (LDE, N)
The upper triangular matrix E.
.TP 8
LDE (input) INTEGER
The leading dimension of the array E. LDE >= max(1, N).
.TP 8
F (input/output) COMPLEX*16 array, dimension (LDF, N)
On entry, F contains the right-hand-side of the second matrix
equation in (1) or (3).
On exit, if IJOB = 0, 1 or 2, F has been overwritten by
the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L,
the solution achieved during the computation of the
Dif-estimate.
.TP 8
LDF (input) INTEGER
The leading dimension of the array F. LDF >= max(1, M).
.TP 8
DIF (output) DOUBLE PRECISION
On exit DIF is the reciprocal of a lower bound of the
reciprocal of the Dif-function, i.e. DIF is an upper bound of
Dif[(A,D), (B,E)] = sigma-min(Z), where Z as in (2).
IF IJOB = 0 or TRANS = 'C', DIF is not referenced.
.TP 8
SCALE (output) DOUBLE PRECISION
On exit SCALE is the scaling factor in (1) or (3).
If 0 < SCALE < 1, C and F hold the solutions R and L, resp.,
to a slightly perturbed system but the input matrices A, B,
D and E have not been changed. If SCALE = 0, R and L will
hold the solutions to the homogenious system with C = F = 0.
.TP 8
WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
IF IJOB = 0, WORK is not referenced. Otherwise,
.TP 8
LWORK (input) INTEGER
The dimension of the array WORK. LWORK > = 1.
If IJOB = 1 or 2 and TRANS = 'N', LWORK >= 2*M*N.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
.TP 8
IWORK (workspace) INTEGER array, dimension (M+N+2)
If IJOB = 0, IWORK is not referenced.
.TP 8
INFO (output) INTEGER
=0: successful exit
.br
<0: If INFO = -i, the i-th argument had an illegal value.
.br
>0: (A, D) and (B, E) have common or very close
eigenvalues.
.SH FURTHER DETAILS
Based on contributions by
.br
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
.br
[1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
for Solving the Generalized Sylvester Equation and Estimating the
Separation between Regular Matrix Pairs, Report UMINF - 93.23,
Department of Computing Science, Umea University, S-901 87 Umea,
Sweden, December 1993, Revised April 1994, Also as LAPACK Working
Note 75. To appear in ACM Trans. on Math. Software, Vol 22,
No 1, 1996.
.br
[2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester
Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal.
Appl., 15(4):1045-1060, 1994.
.br
[3] B. Kagstrom and L. Westin, Generalized Schur Methods with
Condition Estimators for Solving the Generalized Sylvester
Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7,
July 1989, pp 745-751.
.br
|