File: ztrsna.l

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (178 lines) | stat: -rwxr-xr-x 5,433 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
.TH ZTRSNA l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
ZTRSNA - estimate reciprocal condition numbers for specified eigenvalues and/or right eigenvectors of a complex upper triangular matrix T (or of any matrix Q*T*Q**H with Q unitary)
.SH SYNOPSIS
.TP 19
SUBROUTINE ZTRSNA(
JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK,
INFO )
.TP 19
.ti +4
CHARACTER
HOWMNY, JOB
.TP 19
.ti +4
INTEGER
INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N
.TP 19
.ti +4
LOGICAL
SELECT( * )
.TP 19
.ti +4
DOUBLE
PRECISION RWORK( * ), S( * ), SEP( * )
.TP 19
.ti +4
COMPLEX*16
T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
WORK( LDWORK, * )
.SH PURPOSE
ZTRSNA estimates reciprocal condition numbers for specified eigenvalues and/or right eigenvectors of a complex upper triangular matrix T (or of any matrix Q*T*Q**H with Q unitary). 
.SH ARGUMENTS
.TP 8
JOB     (input) CHARACTER*1
Specifies whether condition numbers are required for
eigenvalues (S) or eigenvectors (SEP):
.br
= 'E': for eigenvalues only (S);
.br
= 'V': for eigenvectors only (SEP);
.br
= 'B': for both eigenvalues and eigenvectors (S and SEP).
.TP 8
HOWMNY  (input) CHARACTER*1
.br
= 'A': compute condition numbers for all eigenpairs;
.br
= 'S': compute condition numbers for selected eigenpairs
specified by the array SELECT.
.TP 8
SELECT  (input) LOGICAL array, dimension (N)
If HOWMNY = 'S', SELECT specifies the eigenpairs for which
condition numbers are required. To select condition numbers
for the j-th eigenpair, SELECT(j) must be set to .TRUE..
If HOWMNY = 'A', SELECT is not referenced.
.TP 8
N       (input) INTEGER
The order of the matrix T. N >= 0.
.TP 8
T       (input) COMPLEX*16 array, dimension (LDT,N)
The upper triangular matrix T.
.TP 8
LDT     (input) INTEGER
The leading dimension of the array T. LDT >= max(1,N).
.TP 8
VL      (input) COMPLEX*16 array, dimension (LDVL,M)
If JOB = 'E' or 'B', VL must contain left eigenvectors of T
(or of any Q*T*Q**H with Q unitary), corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors
must be stored in consecutive columns of VL, as returned by
ZHSEIN or ZTREVC.
If JOB = 'V', VL is not referenced.
.TP 8
LDVL    (input) INTEGER
The leading dimension of the array VL.
LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N.
.TP 8
VR      (input) COMPLEX*16 array, dimension (LDVR,M)
If JOB = 'E' or 'B', VR must contain right eigenvectors of T
(or of any Q*T*Q**H with Q unitary), corresponding to the
eigenpairs specified by HOWMNY and SELECT. The eigenvectors
must be stored in consecutive columns of VR, as returned by
ZHSEIN or ZTREVC.
If JOB = 'V', VR is not referenced.
.TP 8
LDVR    (input) INTEGER
The leading dimension of the array VR.
LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N.
.TP 8
S       (output) DOUBLE PRECISION array, dimension (MM)
If JOB = 'E' or 'B', the reciprocal condition numbers of the
selected eigenvalues, stored in consecutive elements of the
array. Thus S(j), SEP(j), and the j-th columns of VL and VR
all correspond to the same eigenpair (but not in general the
j-th eigenpair, unless all eigenpairs are selected).
If JOB = 'V', S is not referenced.
.TP 8
SEP     (output) DOUBLE PRECISION array, dimension (MM)
If JOB = 'V' or 'B', the estimated reciprocal condition
numbers of the selected eigenvectors, stored in consecutive
elements of the array.
If JOB = 'E', SEP is not referenced.
.TP 8
MM      (input) INTEGER
The number of elements in the arrays S (if JOB = 'E' or 'B')
and/or SEP (if JOB = 'V' or 'B'). MM >= M.
.TP 8
M       (output) INTEGER
The number of elements of the arrays S and/or SEP actually
used to store the estimated condition numbers.
If HOWMNY = 'A', M is set to N.
.TP 8
WORK    (workspace) COMPLEX*16 array, dimension (LDWORK,N+1)
If JOB = 'E', WORK is not referenced.
.TP 8
LDWORK  (input) INTEGER
The leading dimension of the array WORK.
LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N.
.TP 8
RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
If JOB = 'E', RWORK is not referenced.
.TP 8
INFO    (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value
.SH FURTHER DETAILS
The reciprocal of the condition number of an eigenvalue lambda is
defined as
.br

        S(lambda) = |v'*u| / (norm(u)*norm(v))
.br

where u and v are the right and left eigenvectors of T corresponding
to lambda; v' denotes the conjugate transpose of v, and norm(u)
denotes the Euclidean norm. These reciprocal condition numbers always
lie between zero (very badly conditioned) and one (very well
conditioned). If n = 1, S(lambda) is defined to be 1.
.br

An approximate error bound for a computed eigenvalue W(i) is given by

                    EPS * norm(T) / S(i)
.br

where EPS is the machine precision.
.br

The reciprocal of the condition number of the right eigenvector u
corresponding to lambda is defined as follows. Suppose
.br

            T = ( lambda  c  )
.br
                (   0    T22 )
.br

Then the reciprocal condition number is
.br

        SEP( lambda, T22 ) = sigma-min( T22 - lambda*I )
.br

where sigma-min denotes the smallest singular value. We approximate
the smallest singular value by the reciprocal of an estimate of the
one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is
defined to be abs(T(1,1)).
.br

An approximate error bound for a computed right eigenvector VR(i)
is given by
.br

                    EPS * norm(T) / SEP(i)
.br