1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
|
.TH ZTRTRI l "15 June 2000" "LAPACK version 3.0" ")"
.SH NAME
ZTRTRI - compute the inverse of a complex upper or lower triangular matrix A
.SH SYNOPSIS
.TP 19
SUBROUTINE ZTRTRI(
UPLO, DIAG, N, A, LDA, INFO )
.TP 19
.ti +4
CHARACTER
DIAG, UPLO
.TP 19
.ti +4
INTEGER
INFO, LDA, N
.TP 19
.ti +4
COMPLEX*16
A( LDA, * )
.SH PURPOSE
ZTRTRI computes the inverse of a complex upper or lower triangular matrix A.
This is the Level 3 BLAS version of the algorithm.
.br
.SH ARGUMENTS
.TP 8
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
.br
= 'L': A is lower triangular.
.TP 8
DIAG (input) CHARACTER*1
.br
= 'N': A is non-unit triangular;
.br
= 'U': A is unit triangular.
.TP 8
N (input) INTEGER
The order of the matrix A. N >= 0.
.TP 8
A (input/output) COMPLEX*16 array, dimension (LDA,N)
On entry, the triangular matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of the array A contains
the upper triangular matrix, and the strictly lower
triangular part of A is not referenced. If UPLO = 'L', the
leading N-by-N lower triangular part of the array A contains
the lower triangular matrix, and the strictly upper
triangular part of A is not referenced. If DIAG = 'U', the
diagonal elements of A are also not referenced and are
assumed to be 1.
On exit, the (triangular) inverse of the original matrix, in
the same storage format.
.TP 8
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -i, the i-th argument had an illegal value
.br
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.
|