1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
SUBROUTINE CGBCON( NORM, N, KL, KU, AB, LDAB, IPIV, ANORM, RCOND,
$ WORK, RWORK, INFO )
*
* -- LAPACK routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER NORM
INTEGER INFO, KL, KU, LDAB, N
REAL ANORM, RCOND
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
REAL RWORK( * )
COMPLEX AB( LDAB, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* CGBCON estimates the reciprocal of the condition number of a complex
* general band matrix A, in either the 1-norm or the infinity-norm,
* using the LU factorization computed by CGBTRF.
*
* An estimate is obtained for norm(inv(A)), and the reciprocal of the
* condition number is computed as
* RCOND = 1 / ( norm(A) * norm(inv(A)) ).
*
* Arguments
* =========
*
* NORM (input) CHARACTER*1
* Specifies whether the 1-norm condition number or the
* infinity-norm condition number is required:
* = '1' or 'O': 1-norm;
* = 'I': Infinity-norm.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* KL (input) INTEGER
* The number of subdiagonals within the band of A. KL >= 0.
*
* KU (input) INTEGER
* The number of superdiagonals within the band of A. KU >= 0.
*
* AB (input) COMPLEX array, dimension (LDAB,N)
* Details of the LU factorization of the band matrix A, as
* computed by CGBTRF. U is stored as an upper triangular band
* matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
* the multipliers used during the factorization are stored in
* rows KL+KU+2 to 2*KL+KU+1.
*
* LDAB (input) INTEGER
* The leading dimension of the array AB. LDAB >= 2*KL+KU+1.
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices; for 1 <= i <= N, row i of the matrix was
* interchanged with row IPIV(i).
*
* ANORM (input) REAL
* If NORM = '1' or 'O', the 1-norm of the original matrix A.
* If NORM = 'I', the infinity-norm of the original matrix A.
*
* RCOND (output) REAL
* The reciprocal of the condition number of the matrix A,
* computed as RCOND = 1/(norm(A) * norm(inv(A))).
*
* WORK (workspace) COMPLEX array, dimension (2*N)
*
* RWORK (workspace) REAL array, dimension (N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL LNOTI, ONENRM
CHARACTER NORMIN
INTEGER IX, J, JP, KASE, KASE1, KD, LM
REAL AINVNM, SCALE, SMLNUM
COMPLEX T, ZDUM
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICAMAX
REAL SLAMCH
COMPLEX CDOTC
EXTERNAL LSAME, ICAMAX, SLAMCH, CDOTC
* ..
* .. External Subroutines ..
EXTERNAL CAXPY, CLACON, CLATBS, CSRSCL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, MIN, REAL
* ..
* .. Statement Functions ..
REAL CABS1
* ..
* .. Statement Function definitions ..
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( KL.LT.0 ) THEN
INFO = -3
ELSE IF( KU.LT.0 ) THEN
INFO = -4
ELSE IF( LDAB.LT.2*KL+KU+1 ) THEN
INFO = -6
ELSE IF( ANORM.LT.ZERO ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CGBCON', -INFO )
RETURN
END IF
*
* Quick return if possible
*
RCOND = ZERO
IF( N.EQ.0 ) THEN
RCOND = ONE
RETURN
ELSE IF( ANORM.EQ.ZERO ) THEN
RETURN
END IF
*
SMLNUM = SLAMCH( 'Safe minimum' )
*
* Estimate the norm of inv(A).
*
AINVNM = ZERO
NORMIN = 'N'
IF( ONENRM ) THEN
KASE1 = 1
ELSE
KASE1 = 2
END IF
KD = KL + KU + 1
LNOTI = KL.GT.0
KASE = 0
10 CONTINUE
CALL CLACON( N, WORK( N+1 ), WORK, AINVNM, KASE )
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.KASE1 ) THEN
*
* Multiply by inv(L).
*
IF( LNOTI ) THEN
DO 20 J = 1, N - 1
LM = MIN( KL, N-J )
JP = IPIV( J )
T = WORK( JP )
IF( JP.NE.J ) THEN
WORK( JP ) = WORK( J )
WORK( J ) = T
END IF
CALL CAXPY( LM, -T, AB( KD+1, J ), 1, WORK( J+1 ), 1 )
20 CONTINUE
END IF
*
* Multiply by inv(U).
*
CALL CLATBS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
$ KL+KU, AB, LDAB, WORK, SCALE, RWORK, INFO )
ELSE
*
* Multiply by inv(U').
*
CALL CLATBS( 'Upper', 'Conjugate transpose', 'Non-unit',
$ NORMIN, N, KL+KU, AB, LDAB, WORK, SCALE, RWORK,
$ INFO )
*
* Multiply by inv(L').
*
IF( LNOTI ) THEN
DO 30 J = N - 1, 1, -1
LM = MIN( KL, N-J )
WORK( J ) = WORK( J ) - CDOTC( LM, AB( KD+1, J ), 1,
$ WORK( J+1 ), 1 )
JP = IPIV( J )
IF( JP.NE.J ) THEN
T = WORK( JP )
WORK( JP ) = WORK( J )
WORK( J ) = T
END IF
30 CONTINUE
END IF
END IF
*
* Divide X by 1/SCALE if doing so will not cause overflow.
*
NORMIN = 'Y'
IF( SCALE.NE.ONE ) THEN
IX = ICAMAX( N, WORK, 1 )
IF( SCALE.LT.CABS1( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
$ GO TO 40
CALL CSRSCL( N, SCALE, WORK, 1 )
END IF
GO TO 10
END IF
*
* Compute the estimate of the reciprocal condition number.
*
IF( AINVNM.NE.ZERO )
$ RCOND = ( ONE / AINVNM ) / ANORM
*
40 CONTINUE
RETURN
*
* End of CGBCON
*
END
|