1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
SUBROUTINE CLARGV( N, X, INCX, Y, INCY, C, INCC )
*
* -- LAPACK auxiliary routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER INCC, INCX, INCY, N
* ..
* .. Array Arguments ..
REAL C( * )
COMPLEX X( * ), Y( * )
* ..
*
* Purpose
* =======
*
* CLARGV generates a vector of complex plane rotations with real
* cosines, determined by elements of the complex vectors x and y.
* For i = 1,2,...,n
*
* ( c(i) s(i) ) ( x(i) ) = ( r(i) )
* ( -conjg(s(i)) c(i) ) ( y(i) ) = ( 0 )
*
* where c(i)**2 + ABS(s(i))**2 = 1
*
* The following conventions are used (these are the same as in CLARTG,
* but differ from the BLAS1 routine CROTG):
* If y(i)=0, then c(i)=1 and s(i)=0.
* If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real.
*
* Arguments
* =========
*
* N (input) INTEGER
* The number of plane rotations to be generated.
*
* X (input/output) COMPLEX array, dimension (1+(N-1)*INCX)
* On entry, the vector x.
* On exit, x(i) is overwritten by r(i), for i = 1,...,n.
*
* INCX (input) INTEGER
* The increment between elements of X. INCX > 0.
*
* Y (input/output) COMPLEX array, dimension (1+(N-1)*INCY)
* On entry, the vector y.
* On exit, the sines of the plane rotations.
*
* INCY (input) INTEGER
* The increment between elements of Y. INCY > 0.
*
* C (output) REAL array, dimension (1+(N-1)*INCC)
* The cosines of the plane rotations.
*
* INCC (input) INTEGER
* The increment between elements of C. INCC > 0.
*
* Further Details
* ======= =======
*
* 6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel
*
* =====================================================================
*
* .. Parameters ..
REAL TWO, ONE, ZERO
PARAMETER ( TWO = 2.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 )
COMPLEX CZERO
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL FIRST
INTEGER COUNT, I, IC, IX, IY, J
REAL CS, D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN,
$ SAFMN2, SAFMX2, SCALE
COMPLEX F, FF, FS, G, GS, R, SN
* ..
* .. External Functions ..
REAL SLAMCH, SLAPY2
EXTERNAL SLAMCH, SLAPY2
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, CMPLX, CONJG, INT, LOG, MAX, REAL,
$ SQRT
* ..
* .. Statement Functions ..
REAL ABS1, ABSSQ
* ..
* .. Save statement ..
SAVE FIRST, SAFMX2, SAFMIN, SAFMN2
* ..
* .. Data statements ..
DATA FIRST / .TRUE. /
* ..
* .. Statement Function definitions ..
ABS1( FF ) = MAX( ABS( REAL( FF ) ), ABS( AIMAG( FF ) ) )
ABSSQ( FF ) = REAL( FF )**2 + AIMAG( FF )**2
* ..
* .. Executable Statements ..
*
IF( FIRST ) THEN
FIRST = .FALSE.
SAFMIN = SLAMCH( 'S' )
EPS = SLAMCH( 'E' )
SAFMN2 = SLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
$ LOG( SLAMCH( 'B' ) ) / TWO )
SAFMX2 = ONE / SAFMN2
END IF
IX = 1
IY = 1
IC = 1
DO 60 I = 1, N
F = X( IX )
G = Y( IY )
*
* Use identical algorithm as in CLARTG
*
SCALE = MAX( ABS1( F ), ABS1( G ) )
FS = F
GS = G
COUNT = 0
IF( SCALE.GE.SAFMX2 ) THEN
10 CONTINUE
COUNT = COUNT + 1
FS = FS*SAFMN2
GS = GS*SAFMN2
SCALE = SCALE*SAFMN2
IF( SCALE.GE.SAFMX2 )
$ GO TO 10
ELSE IF( SCALE.LE.SAFMN2 ) THEN
IF( G.EQ.CZERO ) THEN
CS = ONE
SN = CZERO
R = F
GO TO 50
END IF
20 CONTINUE
COUNT = COUNT - 1
FS = FS*SAFMX2
GS = GS*SAFMX2
SCALE = SCALE*SAFMX2
IF( SCALE.LE.SAFMN2 )
$ GO TO 20
END IF
F2 = ABSSQ( FS )
G2 = ABSSQ( GS )
IF( F2.LE.MAX( G2, ONE )*SAFMIN ) THEN
*
* This is a rare case: F is very small.
*
IF( F.EQ.CZERO ) THEN
CS = ZERO
R = SLAPY2( REAL( G ), AIMAG( G ) )
* Do complex/real division explicitly with two real
* divisions
D = SLAPY2( REAL( GS ), AIMAG( GS ) )
SN = CMPLX( REAL( GS ) / D, -AIMAG( GS ) / D )
GO TO 50
END IF
F2S = SLAPY2( REAL( FS ), AIMAG( FS ) )
* G2 and G2S are accurate
* G2 is at least SAFMIN, and G2S is at least SAFMN2
G2S = SQRT( G2 )
* Error in CS from underflow in F2S is at most
* UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS
* If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN,
* and so CS .lt. sqrt(SAFMIN)
* If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN
* and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS)
* Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S
CS = F2S / G2S
* Make sure abs(FF) = 1
* Do complex/real division explicitly with 2 real divisions
IF( ABS1( F ).GT.ONE ) THEN
D = SLAPY2( REAL( F ), AIMAG( F ) )
FF = CMPLX( REAL( F ) / D, AIMAG( F ) / D )
ELSE
DR = SAFMX2*REAL( F )
DI = SAFMX2*AIMAG( F )
D = SLAPY2( DR, DI )
FF = CMPLX( DR / D, DI / D )
END IF
SN = FF*CMPLX( REAL( GS ) / G2S, -AIMAG( GS ) / G2S )
R = CS*F + SN*G
ELSE
*
* This is the most common case.
* Neither F2 nor F2/G2 are less than SAFMIN
* F2S cannot overflow, and it is accurate
*
F2S = SQRT( ONE+G2 / F2 )
* Do the F2S(real)*FS(complex) multiply with two real
* multiplies
R = CMPLX( F2S*REAL( FS ), F2S*AIMAG( FS ) )
CS = ONE / F2S
D = F2 + G2
* Do complex/real division explicitly with two real divisions
SN = CMPLX( REAL( R ) / D, AIMAG( R ) / D )
SN = SN*CONJG( GS )
IF( COUNT.NE.0 ) THEN
IF( COUNT.GT.0 ) THEN
DO 30 J = 1, COUNT
R = R*SAFMX2
30 CONTINUE
ELSE
DO 40 J = 1, -COUNT
R = R*SAFMN2
40 CONTINUE
END IF
END IF
END IF
50 CONTINUE
C( IC ) = CS
Y( IY ) = SN
X( IX ) = R
IC = IC + INCC
IY = IY + INCY
IX = IX + INCX
60 CONTINUE
RETURN
*
* End of CLARGV
*
END
|