1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
SUBROUTINE CPTCON( N, D, E, ANORM, RCOND, RWORK, INFO )
*
* -- LAPACK routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER INFO, N
REAL ANORM, RCOND
* ..
* .. Array Arguments ..
REAL D( * ), RWORK( * )
COMPLEX E( * )
* ..
*
* Purpose
* =======
*
* CPTCON computes the reciprocal of the condition number (in the
* 1-norm) of a complex Hermitian positive definite tridiagonal matrix
* using the factorization A = L*D*L**H or A = U**H*D*U computed by
* CPTTRF.
*
* Norm(inv(A)) is computed by a direct method, and the reciprocal of
* the condition number is computed as
* RCOND = 1 / (ANORM * norm(inv(A))).
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* D (input) REAL array, dimension (N)
* The n diagonal elements of the diagonal matrix D from the
* factorization of A, as computed by CPTTRF.
*
* E (input) COMPLEX array, dimension (N-1)
* The (n-1) off-diagonal elements of the unit bidiagonal factor
* U or L from the factorization of A, as computed by CPTTRF.
*
* ANORM (input) REAL
* The 1-norm of the original matrix A.
*
* RCOND (output) REAL
* The reciprocal of the condition number of the matrix A,
* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the
* 1-norm of inv(A) computed in this routine.
*
* RWORK (workspace) REAL array, dimension (N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
*
* Further Details
* ===============
*
* The method used is described in Nicholas J. Higham, "Efficient
* Algorithms for Computing the Condition Number of a Tridiagonal
* Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, IX
REAL AINVNM
* ..
* .. External Functions ..
INTEGER ISAMAX
EXTERNAL ISAMAX
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS
* ..
* .. Executable Statements ..
*
* Test the input arguments.
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( ANORM.LT.ZERO ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CPTCON', -INFO )
RETURN
END IF
*
* Quick return if possible
*
RCOND = ZERO
IF( N.EQ.0 ) THEN
RCOND = ONE
RETURN
ELSE IF( ANORM.EQ.ZERO ) THEN
RETURN
END IF
*
* Check that D(1:N) is positive.
*
DO 10 I = 1, N
IF( D( I ).LE.ZERO )
$ RETURN
10 CONTINUE
*
* Solve M(A) * x = e, where M(A) = (m(i,j)) is given by
*
* m(i,j) = abs(A(i,j)), i = j,
* m(i,j) = -abs(A(i,j)), i .ne. j,
*
* and e = [ 1, 1, ..., 1 ]'. Note M(A) = M(L)*D*M(L)'.
*
* Solve M(L) * x = e.
*
RWORK( 1 ) = ONE
DO 20 I = 2, N
RWORK( I ) = ONE + RWORK( I-1 )*ABS( E( I-1 ) )
20 CONTINUE
*
* Solve D * M(L)' * x = b.
*
RWORK( N ) = RWORK( N ) / D( N )
DO 30 I = N - 1, 1, -1
RWORK( I ) = RWORK( I ) / D( I ) + RWORK( I+1 )*ABS( E( I ) )
30 CONTINUE
*
* Compute AINVNM = max(x(i)), 1<=i<=n.
*
IX = ISAMAX( N, RWORK, 1 )
AINVNM = ABS( RWORK( IX ) )
*
* Compute the reciprocal condition number.
*
IF( AINVNM.NE.ZERO )
$ RCOND = ( ONE / AINVNM ) / ANORM
*
RETURN
*
* End of CPTCON
*
END
|