File: ddisna.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (180 lines) | stat: -rw-r--r-- 5,496 bytes parent folder | download | duplicates (14)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
      SUBROUTINE DDISNA( JOB, M, N, D, SEP, INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          JOB
      INTEGER            INFO, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   D( * ), SEP( * )
*     ..
*
*  Purpose
*  =======
*
*  DDISNA computes the reciprocal condition numbers for the eigenvectors
*  of a real symmetric or complex Hermitian matrix or for the left or
*  right singular vectors of a general m-by-n matrix. The reciprocal
*  condition number is the 'gap' between the corresponding eigenvalue or
*  singular value and the nearest other one.
*
*  The bound on the error, measured by angle in radians, in the I-th
*  computed vector is given by
*
*         DLAMCH( 'E' ) * ( ANORM / SEP( I ) )
*
*  where ANORM = 2-norm(A) = max( abs( D(j) ) ).  SEP(I) is not allowed
*  to be smaller than DLAMCH( 'E' )*ANORM in order to limit the size of
*  the error bound.
*
*  DDISNA may also be used to compute error bounds for eigenvectors of
*  the generalized symmetric definite eigenproblem.
*
*  Arguments
*  =========
*
*  JOB     (input) CHARACTER*1
*          Specifies for which problem the reciprocal condition numbers
*          should be computed:
*          = 'E':  the eigenvectors of a symmetric/Hermitian matrix;
*          = 'L':  the left singular vectors of a general matrix;
*          = 'R':  the right singular vectors of a general matrix.
*
*  M       (input) INTEGER
*          The number of rows of the matrix. M >= 0.
*
*  N       (input) INTEGER
*          If JOB = 'L' or 'R', the number of columns of the matrix,
*          in which case N >= 0. Ignored if JOB = 'E'.
*
*  D       (input) DOUBLE PRECISION array, dimension (M) if JOB = 'E'
*                              dimension (min(M,N)) if JOB = 'L' or 'R'
*          The eigenvalues (if JOB = 'E') or singular values (if JOB =
*          'L' or 'R') of the matrix, in either increasing or decreasing
*          order. If singular values, they must be non-negative.
*
*  SEP     (output) DOUBLE PRECISION array, dimension (M) if JOB = 'E'
*                               dimension (min(M,N)) if JOB = 'L' or 'R'
*          The reciprocal condition numbers of the vectors.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit.
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO
      PARAMETER          ( ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            DECR, EIGEN, INCR, LEFT, RIGHT, SING
      INTEGER            I, K
      DOUBLE PRECISION   ANORM, EPS, NEWGAP, OLDGAP, SAFMIN, THRESH
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           LSAME, DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      EIGEN = LSAME( JOB, 'E' )
      LEFT = LSAME( JOB, 'L' )
      RIGHT = LSAME( JOB, 'R' )
      SING = LEFT .OR. RIGHT
      IF( EIGEN ) THEN
         K = M
      ELSE IF( SING ) THEN
         K = MIN( M, N )
      END IF
      IF( .NOT.EIGEN .AND. .NOT.SING ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( K.LT.0 ) THEN
         INFO = -3
      ELSE
         INCR = .TRUE.
         DECR = .TRUE.
         DO 10 I = 1, K - 1
            IF( INCR )
     $         INCR = INCR .AND. D( I ).LE.D( I+1 )
            IF( DECR )
     $         DECR = DECR .AND. D( I ).GE.D( I+1 )
   10    CONTINUE
         IF( SING .AND. K.GT.0 ) THEN
            IF( INCR )
     $         INCR = INCR .AND. ZERO.LE.D( 1 )
            IF( DECR )
     $         DECR = DECR .AND. D( K ).GE.ZERO
         END IF
         IF( .NOT.( INCR .OR. DECR ) )
     $      INFO = -4
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DDISNA', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( K.EQ.0 )
     $   RETURN
*
*     Compute reciprocal condition numbers
*
      IF( K.EQ.1 ) THEN
         SEP( 1 ) = DLAMCH( 'O' )
      ELSE
         OLDGAP = ABS( D( 2 )-D( 1 ) )
         SEP( 1 ) = OLDGAP
         DO 20 I = 2, K - 1
            NEWGAP = ABS( D( I+1 )-D( I ) )
            SEP( I ) = MIN( OLDGAP, NEWGAP )
            OLDGAP = NEWGAP
   20    CONTINUE
         SEP( K ) = OLDGAP
      END IF
      IF( SING ) THEN
         IF( ( LEFT .AND. M.GT.N ) .OR. ( RIGHT .AND. M.LT.N ) ) THEN
            IF( INCR )
     $         SEP( 1 ) = MIN( SEP( 1 ), D( 1 ) )
            IF( DECR )
     $         SEP( K ) = MIN( SEP( K ), D( K ) )
         END IF
      END IF
*
*     Ensure that reciprocal condition numbers are not less than
*     threshold, in order to limit the size of the error bound
*
      EPS = DLAMCH( 'E' )
      SAFMIN = DLAMCH( 'S' )
      ANORM = MAX( ABS( D( 1 ) ), ABS( D( K ) ) )
      IF( ANORM.EQ.ZERO ) THEN
         THRESH = EPS
      ELSE
         THRESH = MAX( EPS*ANORM, SAFMIN )
      END IF
      DO 30 I = 1, K
         SEP( I ) = MAX( SEP( I ), THRESH )
   30 CONTINUE
*
      RETURN
*
*     End of DDISNA
*
      END