1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
|
SUBROUTINE ZGGLSE( M, N, P, A, LDA, B, LDB, C, D, X, WORK, LWORK,
$ INFO )
*
* -- LAPACK driver routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* June 30, 1999
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LWORK, M, N, P
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), B( LDB, * ), C( * ), D( * ),
$ WORK( * ), X( * )
* ..
*
* Purpose
* =======
*
* ZGGLSE solves the linear equality-constrained least squares (LSE)
* problem:
*
* minimize || c - A*x ||_2 subject to B*x = d
*
* where A is an M-by-N matrix, B is a P-by-N matrix, c is a given
* M-vector, and d is a given P-vector. It is assumed that
* P <= N <= M+P, and
*
* rank(B) = P and rank( ( A ) ) = N.
* ( ( B ) )
*
* These conditions ensure that the LSE problem has a unique solution,
* which is obtained using a GRQ factorization of the matrices B and A.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrices A and B. N >= 0.
*
* P (input) INTEGER
* The number of rows of the matrix B. 0 <= P <= N <= M+P.
*
* A (input/output) COMPLEX*16 array, dimension (LDA,N)
* On entry, the M-by-N matrix A.
* On exit, A is destroyed.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* B (input/output) COMPLEX*16 array, dimension (LDB,N)
* On entry, the P-by-N matrix B.
* On exit, B is destroyed.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,P).
*
* C (input/output) COMPLEX*16 array, dimension (M)
* On entry, C contains the right hand side vector for the
* least squares part of the LSE problem.
* On exit, the residual sum of squares for the solution
* is given by the sum of squares of elements N-P+1 to M of
* vector C.
*
* D (input/output) COMPLEX*16 array, dimension (P)
* On entry, D contains the right hand side vector for the
* constrained equation.
* On exit, D is destroyed.
*
* X (output) COMPLEX*16 array, dimension (N)
* On exit, X is the solution of the LSE problem.
*
* WORK (workspace/output) COMPLEX*16 array, dimension (LWORK)
* On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*
* LWORK (input) INTEGER
* The dimension of the array WORK. LWORK >= max(1,M+N+P).
* For optimum performance LWORK >= P+min(M,N)+max(M,N)*NB,
* where NB is an upper bound for the optimal blocksizes for
* ZGEQRF, CGERQF, ZUNMQR and CUNMRQ.
*
* If LWORK = -1, then a workspace query is assumed; the routine
* only calculates the optimal size of the WORK array, returns
* this value as the first entry of the WORK array, and no error
* message related to LWORK is issued by XERBLA.
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 CONE
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER LOPT, LWKOPT, MN, NB, NB1, NB2, NB3, NB4, NR
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZAXPY, ZCOPY, ZGEMV, ZGGRQF, ZTRMV,
$ ZTRSV, ZUNMQR, ZUNMRQ
* ..
* .. External Functions ..
INTEGER ILAENV
EXTERNAL ILAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC INT, MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
MN = MIN( M, N )
NB1 = ILAENV( 1, 'ZGEQRF', ' ', M, N, -1, -1 )
NB2 = ILAENV( 1, 'ZGERQF', ' ', M, N, -1, -1 )
NB3 = ILAENV( 1, 'ZUNMQR', ' ', M, N, P, -1 )
NB4 = ILAENV( 1, 'ZUNMRQ', ' ', M, N, P, -1 )
NB = MAX( NB1, NB2, NB3, NB4 )
LWKOPT = P + MN + MAX( M, N )*NB
WORK( 1 ) = LWKOPT
LQUERY = ( LWORK.EQ.-1 )
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( P.LT.0 .OR. P.GT.N .OR. P.LT.N-M ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
INFO = -7
ELSE IF( LWORK.LT.MAX( 1, M+N+P ) .AND. .NOT.LQUERY ) THEN
INFO = -12
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGGLSE', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Compute the GRQ factorization of matrices B and A:
*
* B*Q' = ( 0 T12 ) P Z'*A*Q' = ( R11 R12 ) N-P
* N-P P ( 0 R22 ) M+P-N
* N-P P
*
* where T12 and R11 are upper triangular, and Q and Z are
* unitary.
*
CALL ZGGRQF( P, M, N, B, LDB, WORK, A, LDA, WORK( P+1 ),
$ WORK( P+MN+1 ), LWORK-P-MN, INFO )
LOPT = WORK( P+MN+1 )
*
* Update c = Z'*c = ( c1 ) N-P
* ( c2 ) M+P-N
*
CALL ZUNMQR( 'Left', 'Conjugate Transpose', M, 1, MN, A, LDA,
$ WORK( P+1 ), C, MAX( 1, M ), WORK( P+MN+1 ),
$ LWORK-P-MN, INFO )
LOPT = MAX( LOPT, INT( WORK( P+MN+1 ) ) )
*
* Solve T12*x2 = d for x2
*
CALL ZTRSV( 'Upper', 'No transpose', 'Non unit', P, B( 1, N-P+1 ),
$ LDB, D, 1 )
*
* Update c1
*
CALL ZGEMV( 'No transpose', N-P, P, -CONE, A( 1, N-P+1 ), LDA, D,
$ 1, CONE, C, 1 )
*
* Sovle R11*x1 = c1 for x1
*
CALL ZTRSV( 'Upper', 'No transpose', 'Non unit', N-P, A, LDA, C,
$ 1 )
*
* Put the solutions in X
*
CALL ZCOPY( N-P, C, 1, X, 1 )
CALL ZCOPY( P, D, 1, X( N-P+1 ), 1 )
*
* Compute the residual vector:
*
IF( M.LT.N ) THEN
NR = M + P - N
CALL ZGEMV( 'No transpose', NR, N-M, -CONE, A( N-P+1, M+1 ),
$ LDA, D( NR+1 ), 1, CONE, C( N-P+1 ), 1 )
ELSE
NR = P
END IF
CALL ZTRMV( 'Upper', 'No transpose', 'Non unit', NR,
$ A( N-P+1, N-P+1 ), LDA, D, 1 )
CALL ZAXPY( NR, -CONE, D, 1, C( N-P+1 ), 1 )
*
* Backward transformation x = Q'*x
*
CALL ZUNMRQ( 'Left', 'Conjugate Transpose', N, 1, P, B, LDB,
$ WORK( 1 ), X, N, WORK( P+MN+1 ), LWORK-P-MN, INFO )
WORK( 1 ) = P + MN + MAX( LOPT, INT( WORK( P+MN+1 ) ) )
*
RETURN
*
* End of ZGGLSE
*
END
|