1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
SUBROUTINE ZTRTI2( UPLO, DIAG, N, A, LDA, INFO )
*
* -- LAPACK routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER DIAG, UPLO
INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * )
* ..
*
* Purpose
* =======
*
* ZTRTI2 computes the inverse of a complex upper or lower triangular
* matrix.
*
* This is the Level 2 BLAS version of the algorithm.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the matrix A is upper or lower triangular.
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* DIAG (input) CHARACTER*1
* Specifies whether or not the matrix A is unit triangular.
* = 'N': Non-unit triangular
* = 'U': Unit triangular
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input/output) COMPLEX*16 array, dimension (LDA,N)
* On entry, the triangular matrix A. If UPLO = 'U', the
* leading n by n upper triangular part of the array A contains
* the upper triangular matrix, and the strictly lower
* triangular part of A is not referenced. If UPLO = 'L', the
* leading n by n lower triangular part of the array A contains
* the lower triangular matrix, and the strictly upper
* triangular part of A is not referenced. If DIAG = 'U', the
* diagonal elements of A are also not referenced and are
* assumed to be 1.
*
* On exit, the (triangular) inverse of the original matrix, in
* the same storage format.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -k, the k-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ONE
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL NOUNIT, UPPER
INTEGER J
COMPLEX*16 AJJ
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZSCAL, ZTRMV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
NOUNIT = LSAME( DIAG, 'N' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZTRTI2', -INFO )
RETURN
END IF
*
IF( UPPER ) THEN
*
* Compute inverse of upper triangular matrix.
*
DO 10 J = 1, N
IF( NOUNIT ) THEN
A( J, J ) = ONE / A( J, J )
AJJ = -A( J, J )
ELSE
AJJ = -ONE
END IF
*
* Compute elements 1:j-1 of j-th column.
*
CALL ZTRMV( 'Upper', 'No transpose', DIAG, J-1, A, LDA,
$ A( 1, J ), 1 )
CALL ZSCAL( J-1, AJJ, A( 1, J ), 1 )
10 CONTINUE
ELSE
*
* Compute inverse of lower triangular matrix.
*
DO 20 J = N, 1, -1
IF( NOUNIT ) THEN
A( J, J ) = ONE / A( J, J )
AJJ = -A( J, J )
ELSE
AJJ = -ONE
END IF
IF( J.LT.N ) THEN
*
* Compute elements j+1:n of j-th column.
*
CALL ZTRMV( 'Lower', 'No transpose', DIAG, N-J,
$ A( J+1, J+1 ), LDA, A( J+1, J ), 1 )
CALL ZSCAL( N-J, AJJ, A( J+1, J ), 1 )
END IF
20 CONTINUE
END IF
*
RETURN
*
* End of ZTRTI2
*
END
|