File: cbdt03.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (195 lines) | stat: -rw-r--r-- 6,079 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
      SUBROUTINE CBDT03( UPLO, N, KD, D, E, U, LDU, S, VT, LDVT, WORK,
     $                   RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            KD, LDU, LDVT, N
      REAL               RESID
*     ..
*     .. Array Arguments ..
      REAL               D( * ), E( * ), S( * )
      COMPLEX            U( LDU, * ), VT( LDVT, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CBDT03 reconstructs a bidiagonal matrix B from its SVD:
*     S = U' * B * V
*  where U and V are orthogonal matrices and S is diagonal.
*
*  The test ratio to test the singular value decomposition is
*     RESID = norm( B - U * S * VT ) / ( n * norm(B) * EPS )
*  where VT = V' and EPS is the machine precision.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the matrix B is upper or lower bidiagonal.
*          = 'U':  Upper bidiagonal
*          = 'L':  Lower bidiagonal
*
*  N       (input) INTEGER
*          The order of the matrix B.
*
*  KD      (input) INTEGER
*          The bandwidth of the bidiagonal matrix B.  If KD = 1, the
*          matrix B is bidiagonal, and if KD = 0, B is diagonal and E is
*          not referenced.  If KD is greater than 1, it is assumed to be
*          1, and if KD is less than 0, it is assumed to be 0.
*
*  D       (input) REAL array, dimension (N)
*          The n diagonal elements of the bidiagonal matrix B.
*
*  E       (input) REAL array, dimension (N-1)
*          The (n-1) superdiagonal elements of the bidiagonal matrix B
*          if UPLO = 'U', or the (n-1) subdiagonal elements of B if
*          UPLO = 'L'.
*
*  U       (input) COMPLEX array, dimension (LDU,N)
*          The n by n orthogonal matrix U in the reduction B = U'*A*P.
*
*  LDU     (input) INTEGER
*          The leading dimension of the array U.  LDU >= max(1,N)
*
*  S       (input) REAL array, dimension (N)
*          The singular values from the SVD of B, sorted in decreasing
*          order.
*
*  VT      (input) COMPLEX array, dimension (LDVT,N)
*          The n by n orthogonal matrix V' in the reduction
*          B = U * S * V'.
*
*  LDVT    (input) INTEGER
*          The leading dimension of the array VT.
*
*  WORK    (workspace) COMPLEX array, dimension (2*N)
*
*  RESID   (output) REAL
*          The test ratio:  norm(B - U * S * V') / ( n * norm(A) * EPS )
*
* ======================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      REAL               BNORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ISAMAX
      REAL               SCASUM, SLAMCH
      EXTERNAL           LSAME, ISAMAX, SCASUM, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, CMPLX, MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      RESID = ZERO
      IF( N.LE.0 )
     $   RETURN
*
*     Compute B - U * S * V' one column at a time.
*
      BNORM = ZERO
      IF( KD.GE.1 ) THEN
*
*        B is bidiagonal.
*
         IF( LSAME( UPLO, 'U' ) ) THEN
*
*           B is upper bidiagonal.
*
            DO 20 J = 1, N
               DO 10 I = 1, N
                  WORK( N+I ) = S( I )*VT( I, J )
   10          CONTINUE
               CALL CGEMV( 'No transpose', N, N, -CMPLX( ONE ), U, LDU,
     $                     WORK( N+1 ), 1, CMPLX( ZERO ), WORK, 1 )
               WORK( J ) = WORK( J ) + D( J )
               IF( J.GT.1 ) THEN
                  WORK( J-1 ) = WORK( J-1 ) + E( J-1 )
                  BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J-1 ) ) )
               ELSE
                  BNORM = MAX( BNORM, ABS( D( J ) ) )
               END IF
               RESID = MAX( RESID, SCASUM( N, WORK, 1 ) )
   20       CONTINUE
         ELSE
*
*           B is lower bidiagonal.
*
            DO 40 J = 1, N
               DO 30 I = 1, N
                  WORK( N+I ) = S( I )*VT( I, J )
   30          CONTINUE
               CALL CGEMV( 'No transpose', N, N, -CMPLX( ONE ), U, LDU,
     $                     WORK( N+1 ), 1, CMPLX( ZERO ), WORK, 1 )
               WORK( J ) = WORK( J ) + D( J )
               IF( J.LT.N ) THEN
                  WORK( J+1 ) = WORK( J+1 ) + E( J )
                  BNORM = MAX( BNORM, ABS( D( J ) )+ABS( E( J ) ) )
               ELSE
                  BNORM = MAX( BNORM, ABS( D( J ) ) )
               END IF
               RESID = MAX( RESID, SCASUM( N, WORK, 1 ) )
   40       CONTINUE
         END IF
      ELSE
*
*        B is diagonal.
*
         DO 60 J = 1, N
            DO 50 I = 1, N
               WORK( N+I ) = S( I )*VT( I, J )
   50       CONTINUE
            CALL CGEMV( 'No transpose', N, N, -CMPLX( ONE ), U, LDU,
     $                  WORK( N+1 ), 1, CMPLX( ZERO ), WORK, 1 )
            WORK( J ) = WORK( J ) + D( J )
            RESID = MAX( RESID, SCASUM( N, WORK, 1 ) )
   60    CONTINUE
         J = ISAMAX( N, D, 1 )
         BNORM = ABS( D( J ) )
      END IF
*
*     Compute norm(B - U * S * V') / ( n * norm(B) * EPS )
*
      EPS = SLAMCH( 'Precision' )
*
      IF( BNORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         IF( BNORM.GE.RESID ) THEN
            RESID = ( RESID / BNORM ) / ( REAL( N )*EPS )
         ELSE
            IF( BNORM.LT.ONE ) THEN
               RESID = ( MIN( RESID, REAL( N )*BNORM ) / BNORM ) /
     $                 ( REAL( N )*EPS )
            ELSE
               RESID = MIN( RESID / BNORM, REAL( N ) ) /
     $                 ( REAL( N )*EPS )
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of CBDT03
*
      END