File: csgt01.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (176 lines) | stat: -rw-r--r-- 5,214 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
      SUBROUTINE CSGT01( ITYPE, UPLO, N, M, A, LDA, B, LDB, Z, LDZ, D,
     $                   WORK, RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     modified August 1997, a new parameter M is added to the calling
*     sequence.
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            ITYPE, LDA, LDB, LDZ, M, N
*     ..
*     .. Array Arguments ..
      REAL               D( * ), RESULT( * ), RWORK( * )
      COMPLEX            A( LDA, * ), B( LDB, * ), WORK( * ),
     $                   Z( LDZ, * )
*     ..
*
*  Purpose
*  =======
*
*  CSGT01 checks a decomposition of the form
*
*     A Z   =  B Z D or
*     A B Z =  Z D or
*     B A Z =  Z D
*
*  where A is a Hermitian matrix, B is Hermitian positive definite,
*  Z is unitary, and D is diagonal.
*
*  One of the following test ratios is computed:
*
*  ITYPE = 1:  RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp )
*
*  ITYPE = 2:  RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp )
*
*  ITYPE = 3:  RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp )
*
*  Arguments
*  =========
*
*  ITYPE   (input) INTEGER
*          The form of the Hermitian generalized eigenproblem.
*          = 1:  A*z = (lambda)*B*z
*          = 2:  A*B*z = (lambda)*z
*          = 3:  B*A*z = (lambda)*z
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          Hermitian matrices A and B is stored.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  M       (input) INTEGER
*          The number of eigenvalues found.  M >= 0.
*
*  A       (input) COMPLEX array, dimension (LDA, N)
*          The original Hermitian matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  B       (input) COMPLEX array, dimension (LDB, N)
*          The original Hermitian positive definite matrix B.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  Z       (input) COMPLEX array, dimension (LDZ, M)
*          The computed eigenvectors of the generalized eigenproblem.
*
*  LDZ     (input) INTEGER
*          The leading dimension of the array Z.  LDZ >= max(1,N).
*
*  D       (input) REAL array, dimension (M)
*          The computed eigenvalues of the generalized eigenproblem.
*
*  WORK    (workspace) COMPLEX array, dimension (N*N)
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RESULT  (output) REAL array, dimension (1)
*          The test ratio as described above.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      REAL               ANORM, ULP
*     ..
*     .. External Functions ..
      REAL               CLANGE, CLANHE, SLAMCH
      EXTERNAL           CLANGE, CLANHE, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CHEMM, CSSCAL
*     ..
*     .. Executable Statements ..
*
      RESULT( 1 ) = ZERO
      IF( N.LE.0 )
     $   RETURN
*
      ULP = SLAMCH( 'Epsilon' )
*
*     Compute product of 1-norms of A and Z.
*
      ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )*
     $        CLANGE( '1', N, M, Z, LDZ, RWORK )
      IF( ANORM.EQ.ZERO )
     $   ANORM = ONE
*
      IF( ITYPE.EQ.1 ) THEN
*
*        Norm of AZ - BZD
*
         CALL CHEMM( 'Left', UPLO, N, M, CONE, A, LDA, Z, LDZ, CZERO,
     $               WORK, N )
         DO 10 I = 1, M
            CALL CSSCAL( N, D( I ), Z( 1, I ), 1 )
   10    CONTINUE
         CALL CHEMM( 'Left', UPLO, N, M, CONE, B, LDB, Z, LDZ, -CONE,
     $               WORK, N )
*
         RESULT( 1 ) = ( CLANGE( '1', N, M, WORK, N, RWORK ) / ANORM ) /
     $                 ( N*ULP )
*
      ELSE IF( ITYPE.EQ.2 ) THEN
*
*        Norm of ABZ - ZD
*
         CALL CHEMM( 'Left', UPLO, N, M, CONE, B, LDB, Z, LDZ, CZERO,
     $               WORK, N )
         DO 20 I = 1, M
            CALL CSSCAL( N, D( I ), Z( 1, I ), 1 )
   20    CONTINUE
         CALL CHEMM( 'Left', UPLO, N, M, CONE, A, LDA, WORK, N, -CONE,
     $               Z, LDZ )
*
         RESULT( 1 ) = ( CLANGE( '1', N, M, Z, LDZ, RWORK ) / ANORM ) /
     $                 ( N*ULP )
*
      ELSE IF( ITYPE.EQ.3 ) THEN
*
*        Norm of BAZ - ZD
*
         CALL CHEMM( 'Left', UPLO, N, M, CONE, A, LDA, Z, LDZ, CZERO,
     $               WORK, N )
         DO 30 I = 1, M
            CALL CSSCAL( N, D( I ), Z( 1, I ), 1 )
   30    CONTINUE
         CALL CHEMM( 'Left', UPLO, N, M, CONE, B, LDB, WORK, N, -CONE,
     $               Z, LDZ )
*
         RESULT( 1 ) = ( CLANGE( '1', N, M, Z, LDZ, RWORK ) / ANORM ) /
     $                 ( N*ULP )
      END IF
*
      RETURN
*
*     End of CSGT01
*
      END