File: sget54.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (164 lines) | stat: -rw-r--r-- 4,832 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
      SUBROUTINE SGET54( N, A, LDA, B, LDB, S, LDS, T, LDT, U, LDU, V,
     $                   LDV, WORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDB, LDS, LDT, LDU, LDV, N
      REAL               RESULT
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), B( LDB, * ), S( LDS, * ),
     $                   T( LDT, * ), U( LDU, * ), V( LDV, * ),
     $                   WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SGET54 checks a generalized decomposition of the form
*
*           A = U*S*V'  and B = U*T* V'
*
*  where ' means transpose and U and V are orthogonal.
*
*  Specifically,
*
*   RESULT = ||( A - U*S*V', B - U*T*V' )|| / (||( A, B )||*n*ulp )
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The size of the matrix.  If it is zero, SGET54 does nothing.
*          It must be at least zero.
*
*  A       (input) REAL array, dimension (LDA, N)
*          The original (unfactored) matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of A.  It must be at least 1
*          and at least N.
*
*  B       (input) REAL array, dimension (LDB, N)
*          The original (unfactored) matrix B.
*
*  LDB     (input) INTEGER
*          The leading dimension of B.  It must be at least 1
*          and at least N.
*
*  S       (input) REAL array, dimension (LDS, N)
*          The factored matrix S.
*
*  LDS     (input) INTEGER
*          The leading dimension of S.  It must be at least 1
*          and at least N.
*
*  T       (input) REAL array, dimension (LDT, N)
*          The factored matrix T.
*
*  LDT     (input) INTEGER
*          The leading dimension of T.  It must be at least 1
*          and at least N.
*
*  U       (input) REAL array, dimension (LDU, N)
*          The orthogonal matrix on the left-hand side in the
*          decomposition.
*
*  LDU     (input) INTEGER
*          The leading dimension of U.  LDU must be at least N and
*          at least 1.
*
*  V       (input) REAL array, dimension (LDV, N)
*          The orthogonal matrix on the left-hand side in the
*          decomposition.
*
*  LDV     (input) INTEGER
*          The leading dimension of V.  LDV must be at least N and
*          at least 1.
*
*  WORK    (workspace) REAL array, dimension (3*N**2)
*
*  RESULT  (output) REAL
*          The value RESULT, It is currently limited to 1/ulp, to
*          avoid overflow. Errors are flagged by RESULT=10/ulp.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      REAL               ABNORM, ULP, UNFL, WNORM
*     ..
*     .. Local Arrays ..
      REAL               DUM( 1 )
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLANGE
      EXTERNAL           SLAMCH, SLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMM, SLACPY
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
      RESULT = ZERO
      IF( N.LE.0 )
     $   RETURN
*
*     Constants
*
      UNFL = SLAMCH( 'Safe minimum' )
      ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
*
*     compute the norm of (A,B)
*
      CALL SLACPY( 'Full', N, N, A, LDA, WORK, N )
      CALL SLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
      ABNORM = MAX( SLANGE( '1', N, 2*N, WORK, N, DUM ), UNFL )
*
*     Compute W1 = A - U*S*V', and put in the array WORK(1:N*N)
*
      CALL SLACPY( ' ', N, N, A, LDA, WORK, N )
      CALL SGEMM( 'N', 'N', N, N, N, ONE, U, LDU, S, LDS, ZERO,
     $            WORK( N*N+1 ), N )
*
      CALL SGEMM( 'N', 'C', N, N, N, -ONE, WORK( N*N+1 ), N, V, LDV,
     $            ONE, WORK, N )
*
*     Compute W2 = B - U*T*V', and put in the workarray W(N*N+1:2*N*N)
*
      CALL SLACPY( ' ', N, N, B, LDB, WORK( N*N+1 ), N )
      CALL SGEMM( 'N', 'N', N, N, N, ONE, U, LDU, T, LDT, ZERO,
     $            WORK( 2*N*N+1 ), N )
*
      CALL SGEMM( 'N', 'C', N, N, N, -ONE, WORK( 2*N*N+1 ), N, V, LDV,
     $            ONE, WORK( N*N+1 ), N )
*
*     Compute norm(W)/ ( ulp*norm((A,B)) )
*
      WNORM = SLANGE( '1', N, 2*N, WORK, N, DUM )
*
      IF( ABNORM.GT.WNORM ) THEN
         RESULT = ( WNORM / ABNORM ) / ( 2*N*ULP )
      ELSE
         IF( ABNORM.LT.ONE ) THEN
            RESULT = ( MIN( WNORM, 2*N*ABNORM ) / ABNORM ) / ( 2*N*ULP )
         ELSE
            RESULT = MIN( WNORM / ABNORM, REAL( 2*N ) ) / ( 2*N*ULP )
         END IF
      END IF
*
      RETURN
*
*     End of SGET54
*
      END