1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
|
SUBROUTINE ZBDT02( M, N, B, LDB, C, LDC, U, LDU, WORK, RWORK,
$ RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
INTEGER LDB, LDC, LDU, M, N
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
DOUBLE PRECISION RWORK( * )
COMPLEX*16 B( LDB, * ), C( LDC, * ), U( LDU, * ),
$ WORK( * )
* ..
*
* Purpose
* =======
*
* ZBDT02 tests the change of basis C = U' * B by computing the residual
*
* RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
*
* where B and C are M by N matrices, U is an M by M orthogonal matrix,
* and EPS is the machine precision.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrices B and C and the order of
* the matrix Q.
*
* N (input) INTEGER
* The number of columns of the matrices B and C.
*
* B (input) COMPLEX*16 array, dimension (LDB,N)
* The m by n matrix B.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,M).
*
* C (input) COMPLEX*16 array, dimension (LDC,N)
* The m by n matrix C, assumed to contain U' * B.
*
* LDC (input) INTEGER
* The leading dimension of the array C. LDC >= max(1,M).
*
* U (input) COMPLEX*16 array, dimension (LDU,M)
* The m by m orthogonal matrix U.
*
* LDU (input) INTEGER
* The leading dimension of the array U. LDU >= max(1,M).
*
* WORK (workspace) COMPLEX*16 array, dimension (M)
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (M)
*
* RESID (output) DOUBLE PRECISION
* RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
*
* ======================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER J
DOUBLE PRECISION BNORM, EPS, REALMN
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DZASUM, ZLANGE
EXTERNAL DLAMCH, DZASUM, ZLANGE
* ..
* .. External Subroutines ..
EXTERNAL ZCOPY, ZGEMV
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCMPLX, MAX, MIN
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
RESID = ZERO
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
REALMN = DBLE( MAX( M, N ) )
EPS = DLAMCH( 'Precision' )
*
* Compute norm( B - U * C )
*
DO 10 J = 1, N
CALL ZCOPY( M, B( 1, J ), 1, WORK, 1 )
CALL ZGEMV( 'No transpose', M, M, -DCMPLX( ONE ), U, LDU,
$ C( 1, J ), 1, DCMPLX( ONE ), WORK, 1 )
RESID = MAX( RESID, DZASUM( M, WORK, 1 ) )
10 CONTINUE
*
* Compute norm of B.
*
BNORM = ZLANGE( '1', M, N, B, LDB, RWORK )
*
IF( BNORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
IF( BNORM.GE.RESID ) THEN
RESID = ( RESID / BNORM ) / ( REALMN*EPS )
ELSE
IF( BNORM.LT.ONE ) THEN
RESID = ( MIN( RESID, REALMN*BNORM ) / BNORM ) /
$ ( REALMN*EPS )
ELSE
RESID = MIN( RESID / BNORM, REALMN ) / ( REALMN*EPS )
END IF
END IF
END IF
RETURN
*
* End of ZBDT02
*
END
|