File: zhst01.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (148 lines) | stat: -rw-r--r-- 4,592 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
      SUBROUTINE ZHST01( N, ILO, IHI, A, LDA, H, LDH, Q, LDQ, WORK,
     $                   LWORK, RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      INTEGER            IHI, ILO, LDA, LDH, LDQ, LWORK, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RESULT( 2 ), RWORK( * )
      COMPLEX*16         A( LDA, * ), H( LDH, * ), Q( LDQ, * ),
     $                   WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  ZHST01 tests the reduction of a general matrix A to upper Hessenberg
*  form:  A = Q*H*Q'.  Two test ratios are computed;
*
*  RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
*  RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
*
*  The matrix Q is assumed to be given explicitly as it would be
*  following ZGEHRD + ZUNGHR.
*
*  In this version, ILO and IHI are not used, but they could be used
*  to save some work if this is desired.
*
*  Arguments
*  =========
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  ILO     (input) INTEGER
*  IHI     (input) INTEGER
*          A is assumed to be upper triangular in rows and columns
*          1:ILO-1 and IHI+1:N, so Q differs from the identity only in
*          rows and columns ILO+1:IHI.
*
*  A       (input) COMPLEX*16 array, dimension (LDA,N)
*          The original n by n matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  H       (input) COMPLEX*16 array, dimension (LDH,N)
*          The upper Hessenberg matrix H from the reduction A = Q*H*Q'
*          as computed by ZGEHRD.  H is assumed to be zero below the
*          first subdiagonal.
*
*  LDH     (input) INTEGER
*          The leading dimension of the array H.  LDH >= max(1,N).
*
*  Q       (input) COMPLEX*16 array, dimension (LDQ,N)
*          The orthogonal matrix Q from the reduction A = Q*H*Q' as
*          computed by ZGEHRD + ZUNGHR.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q.  LDQ >= max(1,N).
*
*  WORK    (workspace) COMPLEX*16 array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The length of the array WORK.  LWORK >= 2*N*N.
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
*
*  RESULT  (output) DOUBLE PRECISION array, dimension (2)
*          RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
*          RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            LDWORK
      DOUBLE PRECISION   ANORM, EPS, OVFL, SMLNUM, UNFL, WNORM
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZLANGE
      EXTERNAL           DLAMCH, ZLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLABAD, ZGEMM, ZLACPY, ZUNT01
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCMPLX, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.0 ) THEN
         RESULT( 1 ) = ZERO
         RESULT( 2 ) = ZERO
         RETURN
      END IF
*
      UNFL = DLAMCH( 'Safe minimum' )
      EPS = DLAMCH( 'Precision' )
      OVFL = ONE / UNFL
      CALL DLABAD( UNFL, OVFL )
      SMLNUM = UNFL*N / EPS
*
*     Test 1:  Compute norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
*
*     Copy A to WORK
*
      LDWORK = MAX( 1, N )
      CALL ZLACPY( ' ', N, N, A, LDA, WORK, LDWORK )
*
*     Compute Q*H
*
      CALL ZGEMM( 'No transpose', 'No transpose', N, N, N,
     $            DCMPLX( ONE ), Q, LDQ, H, LDH, DCMPLX( ZERO ),
     $            WORK( LDWORK*N+1 ), LDWORK )
*
*     Compute A - Q*H*Q'
*
      CALL ZGEMM( 'No transpose', 'Conjugate transpose', N, N, N,
     $            DCMPLX( -ONE ), WORK( LDWORK*N+1 ), LDWORK, Q, LDQ,
     $            DCMPLX( ONE ), WORK, LDWORK )
*
      ANORM = MAX( ZLANGE( '1', N, N, A, LDA, RWORK ), UNFL )
      WNORM = ZLANGE( '1', N, N, WORK, LDWORK, RWORK )
*
*     Note that RESULT(1) cannot overflow and is bounded by 1/(N*EPS)
*
      RESULT( 1 ) = MIN( WNORM, ANORM ) / MAX( SMLNUM, ANORM*EPS ) / N
*
*     Test 2:  Compute norm( I - Q'*Q ) / ( N * EPS )
*
      CALL ZUNT01( 'Columns', N, N, Q, LDQ, WORK, LWORK, RWORK,
     $             RESULT( 2 ) )
*
      RETURN
*
*     End of ZHST01
*
      END