1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
SUBROUTINE ZHST01( N, ILO, IHI, A, LDA, H, LDH, Q, LDQ, WORK,
$ LWORK, RWORK, RESULT )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
INTEGER IHI, ILO, LDA, LDH, LDQ, LWORK, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION RESULT( 2 ), RWORK( * )
COMPLEX*16 A( LDA, * ), H( LDH, * ), Q( LDQ, * ),
$ WORK( LWORK )
* ..
*
* Purpose
* =======
*
* ZHST01 tests the reduction of a general matrix A to upper Hessenberg
* form: A = Q*H*Q'. Two test ratios are computed;
*
* RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
* RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
*
* The matrix Q is assumed to be given explicitly as it would be
* following ZGEHRD + ZUNGHR.
*
* In this version, ILO and IHI are not used, but they could be used
* to save some work if this is desired.
*
* Arguments
* =========
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* ILO (input) INTEGER
* IHI (input) INTEGER
* A is assumed to be upper triangular in rows and columns
* 1:ILO-1 and IHI+1:N, so Q differs from the identity only in
* rows and columns ILO+1:IHI.
*
* A (input) COMPLEX*16 array, dimension (LDA,N)
* The original n by n matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* H (input) COMPLEX*16 array, dimension (LDH,N)
* The upper Hessenberg matrix H from the reduction A = Q*H*Q'
* as computed by ZGEHRD. H is assumed to be zero below the
* first subdiagonal.
*
* LDH (input) INTEGER
* The leading dimension of the array H. LDH >= max(1,N).
*
* Q (input) COMPLEX*16 array, dimension (LDQ,N)
* The orthogonal matrix Q from the reduction A = Q*H*Q' as
* computed by ZGEHRD + ZUNGHR.
*
* LDQ (input) INTEGER
* The leading dimension of the array Q. LDQ >= max(1,N).
*
* WORK (workspace) COMPLEX*16 array, dimension (LWORK)
*
* LWORK (input) INTEGER
* The length of the array WORK. LWORK >= 2*N*N.
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (N)
*
* RESULT (output) DOUBLE PRECISION array, dimension (2)
* RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
* RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER LDWORK
DOUBLE PRECISION ANORM, EPS, OVFL, SMLNUM, UNFL, WNORM
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, ZLANGE
EXTERNAL DLAMCH, ZLANGE
* ..
* .. External Subroutines ..
EXTERNAL DLABAD, ZGEMM, ZLACPY, ZUNT01
* ..
* .. Intrinsic Functions ..
INTRINSIC DCMPLX, MAX, MIN
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
RETURN
END IF
*
UNFL = DLAMCH( 'Safe minimum' )
EPS = DLAMCH( 'Precision' )
OVFL = ONE / UNFL
CALL DLABAD( UNFL, OVFL )
SMLNUM = UNFL*N / EPS
*
* Test 1: Compute norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
*
* Copy A to WORK
*
LDWORK = MAX( 1, N )
CALL ZLACPY( ' ', N, N, A, LDA, WORK, LDWORK )
*
* Compute Q*H
*
CALL ZGEMM( 'No transpose', 'No transpose', N, N, N,
$ DCMPLX( ONE ), Q, LDQ, H, LDH, DCMPLX( ZERO ),
$ WORK( LDWORK*N+1 ), LDWORK )
*
* Compute A - Q*H*Q'
*
CALL ZGEMM( 'No transpose', 'Conjugate transpose', N, N, N,
$ DCMPLX( -ONE ), WORK( LDWORK*N+1 ), LDWORK, Q, LDQ,
$ DCMPLX( ONE ), WORK, LDWORK )
*
ANORM = MAX( ZLANGE( '1', N, N, A, LDA, RWORK ), UNFL )
WNORM = ZLANGE( '1', N, N, WORK, LDWORK, RWORK )
*
* Note that RESULT(1) cannot overflow and is bounded by 1/(N*EPS)
*
RESULT( 1 ) = MIN( WNORM, ANORM ) / MAX( SMLNUM, ANORM*EPS ) / N
*
* Test 2: Compute norm( I - Q'*Q ) / ( N * EPS )
*
CALL ZUNT01( 'Columns', N, N, Q, LDQ, WORK, LWORK, RWORK,
$ RESULT( 2 ) )
*
RETURN
*
* End of ZHST01
*
END
|