File: cgbt01.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (173 lines) | stat: -rw-r--r-- 5,258 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
      SUBROUTINE CGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
     $                   RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      INTEGER            KL, KU, LDA, LDAFAC, M, N
      REAL               RESID
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX            A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  CGBT01 reconstructs a band matrix  A  from its L*U factorization and
*  computes the residual:
*     norm(L*U - A) / ( N * norm(A) * EPS ),
*  where EPS is the machine epsilon.
*
*  The expression L*U - A is computed one column at a time, so A and
*  AFAC are not modified.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  KL      (input) INTEGER
*          The number of subdiagonals within the band of A.  KL >= 0.
*
*  KU      (input) INTEGER
*          The number of superdiagonals within the band of A.  KU >= 0.
*
*  A       (input/output) COMPLEX array, dimension (LDA,N)
*          The original matrix A in band storage, stored in rows 1 to
*          KL+KU+1.
*
*  LDA     (input) INTEGER.
*          The leading dimension of the array A.  LDA >= max(1,KL+KU+1).
*
*  AFAC    (input) COMPLEX array, dimension (LDAFAC,N)
*          The factored form of the matrix A.  AFAC contains the banded
*          factors L and U from the L*U factorization, as computed by
*          CGBTRF.  U is stored as an upper triangular band matrix with
*          KL+KU superdiagonals in rows 1 to KL+KU+1, and the
*          multipliers used during the factorization are stored in rows
*          KL+KU+2 to 2*KL+KU+1.  See CGBTRF for further details.
*
*  LDAFAC  (input) INTEGER
*          The leading dimension of the array AFAC.
*          LDAFAC >= max(1,2*KL*KU+1).
*
*  IPIV    (input) INTEGER array, dimension (min(M,N))
*          The pivot indices from CGBTRF.
*
*  WORK    (workspace) COMPLEX array, dimension (2*KL+KU+1)
*
*  RESID   (output) REAL
*          norm(L*U - A) / ( N * norm(A) * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, I1, I2, IL, IP, IW, J, JL, JU, JUA, KD, LENJ
      REAL               ANORM, EPS
      COMPLEX            T
*     ..
*     .. External Functions ..
      REAL               SCASUM, SLAMCH
      EXTERNAL           SCASUM, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CAXPY, CCOPY
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CMPLX, MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
*     Quick exit if M = 0 or N = 0.
*
      RESID = ZERO
      IF( M.LE.0 .OR. N.LE.0 )
     $   RETURN
*
*     Determine EPS and the norm of A.
*
      EPS = SLAMCH( 'Epsilon' )
      KD = KU + 1
      ANORM = ZERO
      DO 10 J = 1, N
         I1 = MAX( KD+1-J, 1 )
         I2 = MIN( KD+M-J, KL+KD )
         IF( I2.GE.I1 )
     $      ANORM = MAX( ANORM, SCASUM( I2-I1+1, A( I1, J ), 1 ) )
   10 CONTINUE
*
*     Compute one column at a time of L*U - A.
*
      KD = KL + KU + 1
      DO 40 J = 1, N
*
*        Copy the J-th column of U to WORK.
*
         JU = MIN( KL+KU, J-1 )
         JL = MIN( KL, M-J )
         LENJ = MIN( M, J ) - J + JU + 1
         IF( LENJ.GT.0 ) THEN
            CALL CCOPY( LENJ, AFAC( KD-JU, J ), 1, WORK, 1 )
            DO 20 I = LENJ + 1, JU + JL + 1
               WORK( I ) = ZERO
   20       CONTINUE
*
*           Multiply by the unit lower triangular matrix L.  Note that L
*           is stored as a product of transformations and permutations.
*
            DO 30 I = MIN( M-1, J ), J - JU, -1
               IL = MIN( KL, M-I )
               IF( IL.GT.0 ) THEN
                  IW = I - J + JU + 1
                  T = WORK( IW )
                  CALL CAXPY( IL, T, AFAC( KD+1, I ), 1, WORK( IW+1 ),
     $                        1 )
                  IP = IPIV( I )
                  IF( I.NE.IP ) THEN
                     IP = IP - J + JU + 1
                     WORK( IW ) = WORK( IP )
                     WORK( IP ) = T
                  END IF
               END IF
   30       CONTINUE
*
*           Subtract the corresponding column of A.
*
            JUA = MIN( JU, KU )
            IF( JUA+JL+1.GT.0 )
     $         CALL CAXPY( JUA+JL+1, -CMPLX( ONE ), A( KU+1-JUA, J ), 1,
     $                     WORK( JU+1-JUA ), 1 )
*
*           Compute the 1-norm of the column.
*
            RESID = MAX( RESID, SCASUM( JU+JL+1, WORK, 1 ) )
         END IF
   40 CONTINUE
*
*     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of CGBT01
*
      END