1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
SUBROUTINE CGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
$ RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
INTEGER KL, KU, LDA, LDAFAC, M, N
REAL RESID
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* CGBT01 reconstructs a band matrix A from its L*U factorization and
* computes the residual:
* norm(L*U - A) / ( N * norm(A) * EPS ),
* where EPS is the machine epsilon.
*
* The expression L*U - A is computed one column at a time, so A and
* AFAC are not modified.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* KL (input) INTEGER
* The number of subdiagonals within the band of A. KL >= 0.
*
* KU (input) INTEGER
* The number of superdiagonals within the band of A. KU >= 0.
*
* A (input/output) COMPLEX array, dimension (LDA,N)
* The original matrix A in band storage, stored in rows 1 to
* KL+KU+1.
*
* LDA (input) INTEGER.
* The leading dimension of the array A. LDA >= max(1,KL+KU+1).
*
* AFAC (input) COMPLEX array, dimension (LDAFAC,N)
* The factored form of the matrix A. AFAC contains the banded
* factors L and U from the L*U factorization, as computed by
* CGBTRF. U is stored as an upper triangular band matrix with
* KL+KU superdiagonals in rows 1 to KL+KU+1, and the
* multipliers used during the factorization are stored in rows
* KL+KU+2 to 2*KL+KU+1. See CGBTRF for further details.
*
* LDAFAC (input) INTEGER
* The leading dimension of the array AFAC.
* LDAFAC >= max(1,2*KL*KU+1).
*
* IPIV (input) INTEGER array, dimension (min(M,N))
* The pivot indices from CGBTRF.
*
* WORK (workspace) COMPLEX array, dimension (2*KL+KU+1)
*
* RESID (output) REAL
* norm(L*U - A) / ( N * norm(A) * EPS )
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, I1, I2, IL, IP, IW, J, JL, JU, JUA, KD, LENJ
REAL ANORM, EPS
COMPLEX T
* ..
* .. External Functions ..
REAL SCASUM, SLAMCH
EXTERNAL SCASUM, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CAXPY, CCOPY
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
* Quick exit if M = 0 or N = 0.
*
RESID = ZERO
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
*
* Determine EPS and the norm of A.
*
EPS = SLAMCH( 'Epsilon' )
KD = KU + 1
ANORM = ZERO
DO 10 J = 1, N
I1 = MAX( KD+1-J, 1 )
I2 = MIN( KD+M-J, KL+KD )
IF( I2.GE.I1 )
$ ANORM = MAX( ANORM, SCASUM( I2-I1+1, A( I1, J ), 1 ) )
10 CONTINUE
*
* Compute one column at a time of L*U - A.
*
KD = KL + KU + 1
DO 40 J = 1, N
*
* Copy the J-th column of U to WORK.
*
JU = MIN( KL+KU, J-1 )
JL = MIN( KL, M-J )
LENJ = MIN( M, J ) - J + JU + 1
IF( LENJ.GT.0 ) THEN
CALL CCOPY( LENJ, AFAC( KD-JU, J ), 1, WORK, 1 )
DO 20 I = LENJ + 1, JU + JL + 1
WORK( I ) = ZERO
20 CONTINUE
*
* Multiply by the unit lower triangular matrix L. Note that L
* is stored as a product of transformations and permutations.
*
DO 30 I = MIN( M-1, J ), J - JU, -1
IL = MIN( KL, M-I )
IF( IL.GT.0 ) THEN
IW = I - J + JU + 1
T = WORK( IW )
CALL CAXPY( IL, T, AFAC( KD+1, I ), 1, WORK( IW+1 ),
$ 1 )
IP = IPIV( I )
IF( I.NE.IP ) THEN
IP = IP - J + JU + 1
WORK( IW ) = WORK( IP )
WORK( IP ) = T
END IF
END IF
30 CONTINUE
*
* Subtract the corresponding column of A.
*
JUA = MIN( JU, KU )
IF( JUA+JL+1.GT.0 )
$ CALL CAXPY( JUA+JL+1, -CMPLX( ONE ), A( KU+1-JUA, J ), 1,
$ WORK( JU+1-JUA ), 1 )
*
* Compute the 1-norm of the column.
*
RESID = MAX( RESID, SCASUM( JU+JL+1, WORK, 1 ) )
END IF
40 CONTINUE
*
* Compute norm( L*U - A ) / ( N * norm(A) * EPS )
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
END IF
*
RETURN
*
* End of CGBT01
*
END
|