File: cgerqs.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (127 lines) | stat: -rw-r--r-- 3,622 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
      SUBROUTINE CGERQS( M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK,
     $                   INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), B( LDB, * ), TAU( * ),
     $                   WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  Compute a minimum-norm solution
*      min || A*X - B ||
*  using the RQ factorization
*      A = R*Q
*  computed by CGERQF.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= M >= 0.
*
*  NRHS    (input) INTEGER
*          The number of columns of B.  NRHS >= 0.
*
*  A       (input) COMPLEX array, dimension (LDA,N)
*          Details of the RQ factorization of the original matrix A as
*          returned by CGERQF.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= M.
*
*  TAU     (input) COMPLEX array, dimension (M)
*          Details of the orthogonal matrix Q.
*
*  B       (input/output) COMPLEX array, dimension (LDB,NRHS)
*          On entry, the right hand side vectors for the linear system.
*          On exit, the solution vectors X.  Each solution vector
*          is contained in rows 1:N of a column of B.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= max(1,N).
*
*  WORK    (workspace) COMPLEX array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The length of the array WORK.  LWORK must be at least NRHS,
*          and should be at least NRHS*NB, where NB is the block size
*          for this environment.
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLASET, CTRSM, CUNMRQ, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 .OR. M.GT.N ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( LWORK.LT.1 .OR. LWORK.LT.NRHS .AND. M.GT.0 .AND. N.GT.0 )
     $          THEN
         INFO = -10
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CGERQS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 .OR. M.EQ.0 )
     $   RETURN
*
*     Solve R*X = B(n-m+1:n,:)
*
      CALL CTRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', M, NRHS,
     $            CONE, A( 1, N-M+1 ), LDA, B( N-M+1, 1 ), LDB )
*
*     Set B(1:n-m,:) to zero
*
      CALL CLASET( 'Full', N-M, NRHS, CZERO, CZERO, B, LDB )
*
*     B := Q' * B
*
      CALL CUNMRQ( 'Left', 'Conjugate transpose', N, NRHS, M, A, LDA,
     $             TAU, B, LDB, WORK, LWORK, INFO )
*
      RETURN
*
*     End of CGERQS
*
      END