1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
SUBROUTINE CGET01( M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK,
$ RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER LDA, LDAFAC, M, N
REAL RESID
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
REAL RWORK( * )
COMPLEX A( LDA, * ), AFAC( LDAFAC, * )
* ..
*
* Purpose
* =======
*
* CGET01 reconstructs a matrix A from its L*U factorization and
* computes the residual
* norm(L*U - A) / ( N * norm(A) * EPS ),
* where EPS is the machine epsilon.
*
* Arguments
* ==========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* A (input) COMPLEX array, dimension (LDA,N)
* The original M x N matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* AFAC (input/output) COMPLEX array, dimension (LDAFAC,N)
* The factored form of the matrix A. AFAC contains the factors
* L and U from the L*U factorization as computed by CGETRF.
* Overwritten with the reconstructed matrix, and then with the
* difference L*U - A.
*
* LDAFAC (input) INTEGER
* The leading dimension of the array AFAC. LDAFAC >= max(1,M).
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices from CGETRF.
*
* RWORK (workspace) REAL array, dimension (M)
*
* RESID (output) REAL
* norm(L*U - A) / ( N * norm(A) * EPS )
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CONE
PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, J, K
REAL ANORM, EPS
COMPLEX T
* ..
* .. External Functions ..
REAL CLANGE, SLAMCH
COMPLEX CDOTU
EXTERNAL CLANGE, SLAMCH, CDOTU
* ..
* .. External Subroutines ..
EXTERNAL CGEMV, CLASWP, CSCAL, CTRMV
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN, REAL
* ..
* .. Executable Statements ..
*
* Quick exit if M = 0 or N = 0.
*
IF( M.LE.0 .OR. N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Determine EPS and the norm of A.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = CLANGE( '1', M, N, A, LDA, RWORK )
*
* Compute the product L*U and overwrite AFAC with the result.
* A column at a time of the product is obtained, starting with
* column N.
*
DO 10 K = N, 1, -1
IF( K.GT.M ) THEN
CALL CTRMV( 'Lower', 'No transpose', 'Unit', M, AFAC,
$ LDAFAC, AFAC( 1, K ), 1 )
ELSE
*
* Compute elements (K+1:M,K)
*
T = AFAC( K, K )
IF( K+1.LE.M ) THEN
CALL CSCAL( M-K, T, AFAC( K+1, K ), 1 )
CALL CGEMV( 'No transpose', M-K, K-1, CONE,
$ AFAC( K+1, 1 ), LDAFAC, AFAC( 1, K ), 1,
$ CONE, AFAC( K+1, K ), 1 )
END IF
*
* Compute the (K,K) element
*
AFAC( K, K ) = T + CDOTU( K-1, AFAC( K, 1 ), LDAFAC,
$ AFAC( 1, K ), 1 )
*
* Compute elements (1:K-1,K)
*
CALL CTRMV( 'Lower', 'No transpose', 'Unit', K-1, AFAC,
$ LDAFAC, AFAC( 1, K ), 1 )
END IF
10 CONTINUE
CALL CLASWP( N, AFAC, LDAFAC, 1, MIN( M, N ), IPIV, -1 )
*
* Compute the difference L*U - A and store in AFAC.
*
DO 30 J = 1, N
DO 20 I = 1, M
AFAC( I, J ) = AFAC( I, J ) - A( I, J )
20 CONTINUE
30 CONTINUE
*
* Compute norm( L*U - A ) / ( N * norm(A) * EPS )
*
RESID = CLANGE( '1', M, N, AFAC, LDAFAC, RWORK )
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( ( RESID/REAL( N ) )/ANORM ) / EPS
END IF
*
RETURN
*
* End of CGET01
*
END
|