File: cget02.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (147 lines) | stat: -rw-r--r-- 4,415 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
      SUBROUTINE CGET02( TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB,
     $                   RWORK, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            LDA, LDB, LDX, M, N, NRHS
      REAL               RESID
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            A( LDA, * ), B( LDB, * ), X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  CGET02 computes the residual for a solution of a system of linear
*  equations  A*x = b  or  A'*x = b:
*     RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ),
*  where EPS is the machine epsilon.
*
*  Arguments
*  =========
*
*  TRANS   (input) CHARACTER*1
*          Specifies the form of the system of equations:
*          = 'N':  A *x = b
*          = 'T':  A^T*x = b, where A^T is the transpose of A
*          = 'C':  A^H*x = b, where A^H is the conjugate transpose of A
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of columns of B, the matrix of right hand sides.
*          NRHS >= 0.
*
*  A       (input) COMPLEX array, dimension (LDA,N)
*          The original M x N matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  X       (input) COMPLEX array, dimension (LDX,NRHS)
*          The computed solution vectors for the system of linear
*          equations.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  If TRANS = 'N',
*          LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
*
*  B       (input/output) COMPLEX array, dimension (LDB,NRHS)
*          On entry, the right hand side vectors for the system of
*          linear equations.
*          On exit, B is overwritten with the difference B - A*X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  IF TRANS = 'N',
*          LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
*
*  RWORK   (workspace) REAL array, dimension (M)
*
*  RESID   (output) REAL
*          The maximum over the number of right hand sides of
*          norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CONE
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            J, N1, N2
      REAL               ANORM, BNORM, EPS, XNORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANGE, SCASUM, SLAMCH
      EXTERNAL           LSAME, CLANGE, SCASUM, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Quick exit if M = 0 or N = 0 or NRHS = 0
*
      IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.EQ.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
      IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN
         N1 = N
         N2 = M
      ELSE
         N1 = M
         N2 = N
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = CLANGE( '1', N1, N2, A, LDA, RWORK )
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
*     Compute  B - A*X  (or  B - A'*X ) and store in B.
*
      CALL CGEMM( TRANS, 'No transpose', N1, NRHS, N2, -CONE, A, LDA, X,
     $            LDX, CONE, B, LDB )
*
*     Compute the maximum over the number of right hand sides of
*        norm(B - A*X) / ( norm(A) * norm(X) * EPS ) .
*
      RESID = ZERO
      DO 10 J = 1, NRHS
         BNORM = SCASUM( N1, B( 1, J ), 1 )
         XNORM = SCASUM( N2, X( 1, J ), 1 )
         IF( XNORM.LE.ZERO ) THEN
            RESID = ONE / EPS
         ELSE
            RESID = MAX( RESID, ( ( BNORM/ANORM )/XNORM )/EPS )
         END IF
   10 CONTINUE
*
      RETURN
*
*     End of CGET02
*
      END