File: cget03.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (121 lines) | stat: -rw-r--r-- 3,468 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
      SUBROUTINE CGET03( N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK,
     $                   RCOND, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     June 30, 1999
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDAINV, LDWORK, N
      REAL               RCOND, RESID
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            A( LDA, * ), AINV( LDAINV, * ),
     $                   WORK( LDWORK, * )
*     ..
*
*  Purpose
*  =======
*
*  CGET03 computes the residual for a general matrix times its inverse:
*     norm( I - AINV*A ) / ( N * norm(A) * norm(AINV) * EPS ),
*  where EPS is the machine epsilon.
*
*  Arguments
*  ==========
*
*  N       (input) INTEGER
*          The number of rows and columns of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX array, dimension (LDA,N)
*          The original N x N matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  AINV    (input) COMPLEX array, dimension (LDAINV,N)
*          The inverse of the matrix A.
*
*  LDAINV  (input) INTEGER
*          The leading dimension of the array AINV.  LDAINV >= max(1,N).
*
*  WORK    (workspace) COMPLEX array, dimension (LDWORK,N)
*
*  LDWORK  (input) INTEGER
*          The leading dimension of the array WORK.  LDWORK >= max(1,N).
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RCOND   (output) REAL
*          The reciprocal of the condition number of A, computed as
*          ( 1/norm(A) ) / norm(AINV).
*
*  RESID   (output) REAL
*          norm(I - AINV*A) / ( N * norm(A) * norm(AINV) * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      REAL               AINVNM, ANORM, EPS
*     ..
*     .. External Functions ..
      REAL               CLANGE, SLAMCH
      EXTERNAL           CLANGE, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          REAL
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RCOND = ONE
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = CLANGE( '1', N, N, A, LDA, RWORK )
      AINVNM = CLANGE( '1', N, N, AINV, LDAINV, RWORK )
      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
         RCOND = ZERO
         RESID = ONE / EPS
         RETURN
      END IF
      RCOND = ( ONE/ANORM ) / AINVNM
*
*     Compute I - A * AINV
*
      CALL CGEMM( 'No transpose', 'No transpose', N, N, N, -CONE,
     $            AINV, LDAINV, A, LDA, CZERO, WORK, LDWORK )
      DO 10 I = 1, N
         WORK( I, I ) = CONE + WORK( I, I )
   10 CONTINUE
*
*     Compute norm(I - AINV*A) / (N * norm(A) * norm(AINV) * EPS)
*
      RESID = CLANGE( '1', N, N, WORK, LDWORK, RWORK )
*
      RESID = ( ( RESID*RCOND )/EPS ) / REAL( N )
*
      RETURN
*
*     End of CGET03
*
      END