1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
SUBROUTINE CGTT02( TRANS, N, NRHS, DL, D, DU, X, LDX, B, LDB,
$ RWORK, RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER LDB, LDX, N, NRHS
REAL RESID
* ..
* .. Array Arguments ..
REAL RWORK( * )
COMPLEX B( LDB, * ), D( * ), DL( * ), DU( * ),
$ X( LDX, * )
* ..
*
* Purpose
* =======
*
* CGTT02 computes the residual for the solution to a tridiagonal
* system of equations:
* RESID = norm(B - op(A)*X) / (norm(A) * norm(X) * EPS),
* where EPS is the machine epsilon.
*
* Arguments
* =========
*
* TRANS (input) CHARACTER
* Specifies the form of the residual.
* = 'N': B - A * X (No transpose)
* = 'T': B - A**T * X (Transpose)
* = 'C': B - A**H * X (Conjugate transpose)
*
* N (input) INTEGTER
* The order of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrices B and X. NRHS >= 0.
*
* DL (input) COMPLEX array, dimension (N-1)
* The (n-1) sub-diagonal elements of A.
*
* D (input) COMPLEX array, dimension (N)
* The diagonal elements of A.
*
* DU (input) COMPLEX array, dimension (N-1)
* The (n-1) super-diagonal elements of A.
*
* X (input) COMPLEX array, dimension (LDX,NRHS)
* The computed solution vectors X.
*
* LDX (input) INTEGER
* The leading dimension of the array X. LDX >= max(1,N).
*
* B (input/output) COMPLEX array, dimension (LDB,NRHS)
* On entry, the right hand side vectors for the system of
* linear equations.
* On exit, B is overwritten with the difference B - op(A)*X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* RWORK (workspace) REAL array, dimension (N)
*
* RESID (output) REAL
* norm(B - op(A)*X) / (norm(A) * norm(X) * EPS)
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER J
REAL ANORM, BNORM, EPS, XNORM
* ..
* .. External Functions ..
LOGICAL LSAME
REAL CLANGT, SCASUM, SLAMCH
EXTERNAL LSAME, CLANGT, SCASUM, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CLAGTM
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0 or NRHS = 0
*
RESID = ZERO
IF( N.LE.0 .OR. NRHS.EQ.0 )
$ RETURN
*
* Compute the maximum over the number of right hand sides of
* norm(B - op(A)*X) / ( norm(A) * norm(X) * EPS ).
*
IF( LSAME( TRANS, 'N' ) ) THEN
ANORM = CLANGT( '1', N, DL, D, DU )
ELSE
ANORM = CLANGT( 'I', N, DL, D, DU )
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = SLAMCH( 'Epsilon' )
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
* Compute B - op(A)*X.
*
CALL CLAGTM( TRANS, N, NRHS, -ONE, DL, D, DU, X, LDX, ONE, B,
$ LDB )
*
DO 10 J = 1, NRHS
BNORM = SCASUM( N, B( 1, J ), 1 )
XNORM = SCASUM( N, X( 1, J ), 1 )
IF( XNORM.LE.ZERO ) THEN
RESID = ONE / EPS
ELSE
RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
END IF
10 CONTINUE
*
RETURN
*
* End of CGTT02
*
END
|